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The problem

We are interested in the utility maximization problem:
sup Elu(z + (H.X)71)]

u IS increasing strictly concave and differentiable
x € R is the initial endowment, T € (0, +oc],
X = (Xt)4e[o.7 is an R¢—valued cad-lag semimartingale,
which models the discounted prices of d assets,
H C {Rd — valued, predictable, X — integrable proc. H}
IS an appropriate class of “admissible” integrands

(HX)r = [ Hs - dXs



Main issues
X is not necessarily locally bounded

New concept of W —admissibility

(H-X);>—cW Vt<T,

Unified treatment - via duality - of the cases
u:(0,400) = Randu: (—oo,+0) — R.

On compatibility conditions on the losses W admitted in trading:

Ja > Osuch that Efu(z — aW)] > —oo.

the dual variables, i.e. "the sigma martingale measures” in general belong to
bay (1)

Big losses (given u) == bubbles



Definition of “classical” admissible strategies
DEFINITION

A trading strategy H is admissible (we will say 1—admissible) if there exists a con-
stant ¢ € R such that, P — a.s.,

(H-X)>—cl forallte[0,T].

H1 is the class of these 1—admissible strategies.

In the non locally bounded case it can happen that:

H! = {0}

and this fact forces us to introduce the less restrictive notion of W —admissibility, in
order to provide a non trivial enlargement of the class H?!.



Motivation

X = (X, X1) one period process with
Xo=0 and Xy~ N(u,o°)
H = {H predictable and X — integrable} = R
(H-X)1;=HX; HEeR
H X4 is not bounded from below, unless H = O.
= H = {0}.
Take u(z) = —e™ 7%, then
sup Elu(x+ HX1)] =u(xz+0) = —e 7.

HeH!?

(g4 ln?
sup Flu(x + HX1)] = —e (e+3552) > —e L.
HeH

The maximizer is given by

H="¢nl ifu-o.
o



Definition of W — ADMI1SS1BLE strategies
DEFINITION
Let W € LO(P) be a fixed random variable s.t.
W > 1 P— a.s., but possibly unbounded from above.

The R%—valued predictable X —integrable process H is W —admissible, or it be-
longs to 1", if:

e there exists a constant ¢ >0 such that, P-a.s.
(H-X)¢>—cW Vt<T.
(hence (H - X); can be unbounded from above and from below)

Accepting a greater risk will increase the expected utility.

Note that
Hl c 1Y,
since W > 1.



W is SUITABLE
(W is sufficiently large)
DEFINITION:
A random variable W € LO(P) is suitable if W > 1 P— a.s. and

for all 1 < i < d there exists a process H* such that:
(H"- XY < W, forall t € [0,T]
P{w|3t 0 H}(w) = 0}) = 0.

(“ H* # 0 ” and both investments H* and —H" in the single asset X* are “W-
admissible”).

<
>

PROPOSITION:

If X is locally bounded, then

the constant 1 is suitable.



W is COMPATIBLE with u

(W not too large)

oV (z) £sup{a>0]| Elu(z — aW)] > —co} € [0, +0c0].
DEFINITION:

A random variable W € LO(P) is compatible if W > 1 P— a.s. and

Ja > Osuch that Efu(x — aW)] > —c. ((*))
or equivalently if
144
a”’ (x) > 0.
REMARK on Cramer’s condition. If u(z) = —e™%, then (*) holds iff

Ja > 0 such that E[e®"] < 0.
DEFINITION: YV is the set of all suitable and compatible random v.;

Weo £{W e W : oW (z) = +o0} .



On "compatibility” conditions

aW(z) £sup{a>0| Elu(z — aW)] > —cx}.

W e L*, (1)
Va > 0F[u(zx —aW)] > —oo, (2)
Ja > O0E[u(x — aW)] > —oo. (3)

Obviously: (2) < oW (2) =0, (3) @ aW'(2) >0, (1) = (2) = (3)

The strongest condition (1) leads to classical 1 —admissibility: H"W = H1

The weaker compatibility condition (2) is studied in Biagini-F. (2004) and leads to:
i) Uniformity results w.rio W € W :

the optimal value & the optimal solution do not depend on which W is selected in
Weo

i) dual variables that are probability measures

The weakest condition (3) will lead to dual variables that are only in ba (1).



ASSUMPTION (1):

u : R — RU{—oc} is increasing strictly concave and differentiable on the interior
7 = (a,+0) of its effective domain and:

uw'(a) £ Iiiﬂ v (x) = +oo, v/ (+o0) 2 lim 4/ (z) = 0.

W.l.o.g., either Z = (0, 4oc0) or Z = (—o0, +00).

If u : R — R then: v has Reasonable Asymptotic Elasticity - RAE(u) - as introduced
by Schachermayer (and Kramkov - Schachermayer)

(i) AB—oo(u) 2 lim _ir(g:wé(a;) > 1
(i1) AE4 o(u) 2 lim sup™®) g

If u : (0,400) — Rthen: AEL (u) < 1.

NOTE: This condition is needed even in the locally bounded case to avoid pathologi-
cal phenomena.



ASSUMPTION (2) :
WeW#£D

(i.e. there exists a suitable and compatible loss random variable W)
REMARKS

(i) Suppose X locally bounded. Then:

Assumption (2) is automatically satisfied since W =1 € W.

(i) General X (not nec. positive or loc. bounded),

If Z = (0, 4+00) the assumption (2) implies

x>0and W € L,
since Elu(z —aW)] > -0 = xz—aW >0
In this case, w.l.0.g. we select

W=1 and H"Y =H!



Definitions of Py and My

The convex conjugate ® : Ry — R of u is:

®(y) = supu(@) —zy}.

r€eR
DEFINITION
Po = {£ € L (P) | E[®(&)] < +o0}.
If £ = then (Q < P has finite entropy.
DEFINITION

M, ={Q < P : X is a o0 — martingale w.r.to Q}

is the set of Sigma martingale probability m.

Essentially, X is a c—martingale if each component X* can be written as a stochastic
integral of a local martingale N*.

M replaces the set of loc. martingale measures, that was adequate when X was
assumed locally bounded.



Nice mathematical properties when W € W

Let W € LO(P) and define:
M, w = {Q € My | Eg[W] < +o0};

Mgpw ={Q < P|Eg[W] < 400 and
H - X is a Q-supermart. VH € HW};

Mrw £{Q < P|Eg[W]< 4o (H-X)7 € L(Q),
Eql(H - X)r] <0VH € HW}.

LEMMA:

Let W € W and suppose that M,y 7 & Then:
MO’,W — Msup,W — MT,W'
and
MJ7W NP = Ms N Pgp.

M, N Py will be the relevant set of “pricing” probability measures, when o'V (2) =
“+ o0



Dual Varables

(L>(P),ba(P))

H ¢ HVif (H-X);>—cW Vt<T.
KW = {(H-X)r | HeH"}
The following set replaces the set of bounded super-replicable claims:

s KV

Cw £ (= I3(P) N L (P)
KW
By Fatou:
sup Flu(x+ k)] = sup Elu(x + EW)]
kEKW kE W
= sup Elu(z+ fW)]
feCw

— inf ...
z€(Cyy)0



The set of dual variables is:
Zy £ CYy
Zy £{z€ba|z(f) <0forall f€Cy} Cbay

REMARK:

€z — (k)—|— (k)<0forallk€KW

< Zr\—— Zs\——
%% r W S w’ = ’

where, by Yosida-Hewitt,

z = zr+ 25 € ca P pa

How can we interpret the dual variables z € Zy;, as pricing operators ?



On dual variables and o —martingale measures

After normalization, each dual variable z € Zy;, having zero singular component is
a sigma martingale measure.

k k
2 € Zy o ZT(W) + zS(W) <Oforallk e K.
Let Z{;, be the set of true measures in Zyy, that is

zh, = Zy N LY(P)
(possibly empty)

PROPOSITION:
If Q € M,y then z £ Q(We) € Z7;,.

Viceversa, if z € Z;,, then Q = Z(l'—/WW)) € My w.



RESULTS

1. Existence (and uniqueness) and properties of the optimal solution to primal and
dual problems when X is a general semimartingale

2. Unifying framework for:

u:(0,40) - Randu: (—o00,+0) — R
(a) same class of admissible integrands

(b) same class of dual variables

3. Z = (0, +o0) we recover known results (CSW)



4. T = ( — 00, 400) W (2) = 40
(@) Qs =0
(b) uniformity with respectto W € Wwo.

(c) supermart. property of the optimal wealth proc.

5 7 =(—o00,+0) aW(z) < 40
(a) sufficient conditions for Q7 = 0

(b) examples show that Q% %= 0

6. When big losses are admitted (w.r.to «) then the pricing functionals have a sin-
gular component (even with no random endowment).



First simple result

UWV(z) 2 sup Eu(z+ (H- - X)71)]
HeHW
By Fatou, Fenchel, Rockafellar:

THEOREM

fW e wand UV (2) < u(4o0) then:

sup FElu(z+ (H-X)7)] = sup Elu(x+ k)]

HcHW ke KW
= sup FElu(z+ kW)] = sup Elu(x+ fW)]
_ x dzr 1 dzy
= min {Blg gl + B |9 p)] + GG} < oo,

and the min is reached by an element z* € Zy, C bay such that z;:(£2) > 0.

Dy {f € L>®| Elu(x + fW)] > —oco}

G(zs) sup {—=zs(f)}, zs € ba.
feDwy

> [l>



z € Zyy — My (P,G) 2 Q

ZT(%‘) + z5(e)

Q(e) = ZT(%)

, 2 € Zyw

My & {Q €bay | Qr(W) < 400,Qr() =1,
Or (k) + QS(%) <oforallk e KW,

Notice:
| Qr |=1
sup FElu(z+ (H - X)7)]
HeHW
= min A+ E [cb(AdQT)} + AG(Qs) <
A>0,QeMyy dP
DEFINE:

My (P,G) £ {z € My 1 G(Qs) < o0, Qr € Py}



Main result (all utility functions)

K2 {fe L' (Qr) and Eq,[f] < G(Qs) VQ € My (®, &)}
THEOREM

If sup;w Elu(z 4+ (H - X)7)] < u(+o00) then:
MW(CD, G) 7'_é <,

the optimal solution to:

U () 2 sup {Elu(z+ )] | f € K§}
exists, it is given by

dQ;
dP
where QQ* and A* are optimal for the dual problem

fr 2t —z— ' (V) e K§



and

sup Efu(z + (H - X)7)]
HeHW

min A+ E [CD()\

EQ;g [fz] = G(Q:)

dQr
dP

)] + AG(Qs)



THREE CASES

oV (z) £sup{a>0]| Elu(z — aW)] > —co} € [0, 4+oc0].
1. 7 = (0, 40).
a' () > 0 implies z > 0and W € L.

1. Then:

2. T = (—00,+) and & () = + 0.

3. Z = (—00,+) and &V (z) < 4+oc.



FIRST CASE: I = (0, +00) - As in CSW

Then oV (z) > 0 implies > 0 and W € L. Then:

W=1andal(z) ==

Normalize z € 21 C bay: R(-) = zz((fz))v sothatl R|=1

Dual variables as in Cvitanic Schachermayer Wang.

dR*

—ye Kt
dP)

Is the optimal solution to

sup {E[u(a: + Ol f€ Kl}

= sup{E[u(w + NI fe Kg}
and satisfies

(we recover known results).



SECOND CASE: I = (—o0, +0) and o'V (z) = +0
Back to Q € My (P, G), where| Qr |= 1.

Since Efu(z — aW)] > —oo foralla > 0
Dy = {f € L*(P)| Elu(z + fW)] > —co} = L®(P)
G(Qs) £ sup {—=Qs(f)} = +o0o,unless Qs = 0.
JE€Dw
Hence:
G(Qy) =0, Qs()=0, Qi()=1
The optimal Q* is a true probability!!!
MW(CD» G) = Ms NPy
K§ = K3 ={f e L'(Q): Eglfl <0VQ € My NP}
The set M, N Py does not depend on W € W

a true expectation.



THEOREM (CASE I = (—o0, +00) and o'V (z) = +0)

Suppose that there exists Wy € Wxo and zg € R such that UMVo(zg) < u(400).
Then:

(@) Mo NPy # I,
(b) Forall W € Ws and all z € R, UW () < u(400);
(c) UW () does not depend on W € Wxo, and

UW(2) = min e+ E [<D (A@”;
A>0,Qe MsNPy dP
(d) Vx € R there exists the optimal solution f, € K3 :
max{Elu(z + ]| f € K} = Elu(z + f2)] = Usp(x) < u(c0)
and
Ugp(x) = UW (2) forall W € Wao!
(e) If Az, @« is the optimal solution in (c), then:

dQz




(f) There exists a R¢—valued predictable X —integrable process H* such that

fr=(H* X)r Qz— a.s.

and H* - X is a Qz-uniformly integrable martingale.
(g) Supermartingale property of H* - X:

If Q. ~ P then the optimal process
H?" - X is a supermatingale wrt each My N Pgp.
(h) Let Vi, (A) = mingen,npg, E[CD()\Z—g)] and let @ attain the minimum.
Ugp(z) = inf I+ Vo (M)}
V,, and Ug are cont. differentiable and:

dQ)\) dQ)\]
dP = dP

Ve (\) = E[d/(A




0
WHY KQ ?

K$ ={f e LY Q) : Bglf] <0VQ € My N Pg}

EXAMPLE: We show what may go wrong:
(1) Arbitrage free market (NFLVR holds true); (2) Weo # &

(3) U (2) < u(4o0) forall W € Wxo; (4) For each W € Wxo the problem

sup FElu(z 4+ (H - X)7)]
HecHW

does not admit an optimal solution H* € HW .

Therefore, the domain Kc% larger than K" is really needed. In general
Jz € K(% but  fx ¢ KW,
However,

sup Flu(xz + k)] = sup FElu(x + k)].
keKW kEKS



The supermartingale property of the optimal process

(Biagini-F. 2004)

H?* .- X is a supermatingale w.r.to each My, N Pg.
A bit of history

The supermartingale property of the optimal portfolio process for general semimartin-
gales can be seen as the fourth point in the following list, concerning the case X
locally bounded.:

1. Six Authors’ paper.

When u(x) = —e~% and the reverse Holder inequality holds, it was proved that
the optimal wealth process is a true martingale wrt every loc. mart. meas. @
with finite entropy.

2. Kabanov and Stricker removed the RHI;



3. Schachermayer proved that if Q, ~ P, then
H, - X is a supermartingale under every loc. mart. meas. with finite entropy

(the true martingale property is lost for general u).

e We proved that this supermartingale property holds even for unbounded semi-
martingales.



Example 1 (Merton)

We consider a Black Scholes market with an exponential utility maximizer agent.

dXy = pXpdt +o0XdBy 0 <t<T < o0,
where B is the standard Brownian motion.

Here the process is continuous (hence locally bounded) and the hypotheses of the
Theorem are satisfied with Wy = 1, z arbitrary, so that:

UW(z) =Ul(z) forany W € Wx.
Let Z; = By + gt be the Brownian motion under the unique martingale measure Q.

It is widely known that
Ul(z) = sup Elu(z + k)] = B[—e~ @teZ1)],
kekl
However, the function

Jo = HZT
o

does not belong to K1, because it is unbounded, and no optimal solution exists in
K1



But if we take W/ = 1 — inf,<1 Z;, then:

W' € Ws and frc KW
Indeed:
T 1
=2 —dx, with H =-L_ eV

oJOo oXy 02X

This classic setup provides an example in which:

(1) HY is strictly contained in HW',

(2) U(z) = UV (2).

(3) There exists an optimal solution in #"', but not in 1.

This enlargement of the strategies does not increase the maximum, but it is
necessary to catch the optimal solution



Example 2 (not locally bounded price process)

Let u(z) = —e™%, ®(2) = zInz — z, and consider the price process:
X =V i<y

which consists of one jump of size V' at the stopping time .

Suppose V ~ N(u,c2), u # 0,and V and 7 are P—independent.
H'={0}, K'=/{0}

Ul(z) = sup E[-e  @th)] = =
keK1

Note that the constant 1 is NOT X —suitable, hence:

1 ¢ Weoo.
PROPOSITION:

MW E@A+|V]) € Weo =0

(2) My NPy 7= 0.



(3) Forall z € R, UW/(:(;) < 0 = u(4o0) and
__—(z+k) — . @ }
k:lIJ([‘)’V’ Pl | y>O,Qr2}\r}amP¢ {my + E[CD(ydP)] (4)

(4) the supremum in the primal problem is a maximum, the optimal solution is

f*=%V€KW'
(o)

and the optimal value
2
(g B
UW/(ZU) — ¢ o) > —e °

is strictly bigger than —e™%*, which is the optimal value of the maximization on the
trivial domain K1 = {0}.

Similar results can be obtained in a model with infinitely many jumps: take a Com-
pound Poisson process on [0, T1:

Xi= ) Vj,
J<Ny

where the jumps V;; are unbounded (i.e.:V; ~ N(m, o2), with m # 0) and Ny is a
Poisson process independent from (V).



THIRD CASE: I = (—o0, +0) and o' (2) < 40

Dy £ {f € L=®(P) | E[u(z + fW)] > —oo}

Note that
fn® —nlpy<yy € Dforalln > 1.

Hence: if z € bay satisfy G(zs) < 400, then
zs({W <n})=0foralln > 1.

zs(f) = zs(flwsn), f € L.
Define for f € KW
Cf = |i7[LT1 Cn,
where:
cn(f) = min{c | fliwsny 2 _CW1{W>n}}
is the minimal ¢ such that f > —cW for W > n.



cn(f) = min{c | fI{W>n} > _CWI{W>n}}7 cn(f) | Cf
WV(z) & sup{a >0 | Elu(x — aW)] > —oco} > 0.

PROPOSITION

Suppose that the optimal f» € K". Then
() < G = 2(10) < o2 (@)
As a consequence:
wa<on:>z;"=O.

Interpretation:

When the maximum utility is reached without becoming too close to the maximum
tolerated risk, the optimal charge is a true measure.

When the optimal claim 'tends’ to the maximum risk, a singular part may or may not
appear in the optimal Q*: this depends also on the market model, as shown in the
examples.



Example: exponential utility without bubble: c;, < v

One period market model, Xy = 0, X7 doubly exponential with density: \/756—\@33—”.
X is unbounded from both sides

W =14 |Xq|is suitable, HY =R and oV () = oV = /3.

sup E[—e %1l = sup E[—e %*1)] = E[—e *1] = 3 0= u(400).
aeR la|<V/3 2e
fr=X1 € K" and ¢y, =1 < o', then
Qs =0
sup E[—e_aXl] — min e_H(QTJP)_\/gQS(Q)
aeR Qeba :Eq, [X1]+Qs(33)=0
e —e_H(Qrap) — _i
2e

3
where dQ = e~ N(3e)e=X14P is the optim. marting. m.:



Example (continuation)

The relevant Q € My (P, G) satisfy (K > 0):

Qr(X1) + Qs([K,+00)) — Qs((—o0,—K]) =0
and Qs is null on each bounded set.

Examples of Q € My (P, G):
Qr =P

(s pure charge such that:
e on the positive halfline and on every compact it is null
e it gives mass 1 to the whole negative halfline.

Then
X1

14 |X1|

) = @Qr(X1) — Qs((—o0,0])
= 1—-1=0

Qr(Xl) + Qs(



Example: exponential utility with bubble, c¢, = o'V
Q1 = {wcl),w%,w%,--- ,wl ... }and Qo =R.

Fix a doubly exponential variable Y on €25 with density:

— ||

andtake W =1+ |Y|.
aV(z) = =1.
Let Q = Q1 x Qo, Fp trivial and F; = P(21) ® o (W).

Define: Xg = 0and X1 = ZW, where Z € L°°(£21)
1

Z:{ 1 1 oln w

~—1 onw;, n=>1

Let P = P;® P», where P, gives Y the doubly-exp distribution and P; is identified
with the numbers

pn = Pj(w}) > 0,n > 0.



The investor has exponential utility, hence we face (x = 0):

sup E[—e 1]

hER
Selecting p,, appropriately, we show:

g(h) & E[—e " X1]is finite iff —1 < h < 1;
g'(h) >0forall -1 <h <1

Then the maximum of g is reached when h = 1.

dQy = e 1
dP  E[e—X1]

fﬂf — Xl)

Since ¢'(1) > 0,

g'(1)

>0
Ele—*1]

G(Q5) :EQﬁ [fz] =

and Q¥(2) = Byl fz] > 0

Note that ¢y, = 1 = o'V,



