Seminars on Quantitative Finance The Fields Institute Toronto

A Unifying Framework for Utility Maximization

Problems with Unbounded Semimartingales

based on three joint papers with

Sara Biagini

Università degli Studi di Perugia

Marco Frittelli

DiMaD - Università di Firenze

The problem

We are interested in the utility maximization problem:

 $\sup_{H \in \mathcal{H}} E[u(x + (H.X)_T)]$

*

 \boldsymbol{u} is increasing strictly concave and differentiable

 $x \in \mathbb{R}$ is the initial endowment, $T \in (0, +\infty]$,

 $X = (X_t)_{t \in [0,T]}$ is an \mathbb{R}^d -valued càd-làg semimartingale,

which models the discounted prices of d assets,

$$\mathcal{H} \subseteq \left\{ \mathbb{R}^d - \mathsf{valued}, \, \mathsf{predictable}, \, X - \mathsf{integrable} \; \mathsf{proc.} \; H
ight\}$$

is an appropriate class of "admissible" integrands

 $(H.X)_T = \int_0^T H_s \cdot dX_s$

Main issues

- X is not necessarily locally bounded
- New concept of *W*-admissibility

 $(H \cdot X)_t \ge -cW \quad \forall t \le T,$

• Unified treatment - via duality - of the cases

 $u: (0, +\infty) \to \mathbb{R} \text{ and } u: (-\infty, +\infty) \to \mathbb{R}.$

• On **compatibility** conditions on the losses *W* admitted in trading:

 $\exists \alpha > 0 \text{ such that } E[u(x - \alpha W)] > -\infty.$

• the dual variables, i.e. "the sigma martingale measures" in general belong to

 $ba_{+}(1)$

Big losses (given u) \Longrightarrow bubbles

Definition of "classical" admissible strategies

DEFINITION

A trading strategy *H* is admissible (we will say 1-admissible) if there exists a constant $c \in \mathbb{R}$ such that, P - a.s.,

 $(H \cdot X)_t \ge -c1$ for all $t \in [0, T]$.

 \mathcal{H}^1 is the class of these 1–admissible strategies.

In the **non locally bounded case** it can happen that:

$$\mathcal{H}^1 = \{0\}$$

and this fact forces us to introduce the less restrictive notion of W-admissibility, in order to provide a non trivial enlargement of the class \mathcal{H}^1 .

Motivation

 $X = (X_0, X_1)$ one period process with $X_0 = 0$ and $X_1 \sim N(\mu, \sigma^2)$ $\mathcal{H} = \{H \text{ predictable and } X - \text{ integrable}\} = \mathbb{R}$ $(H \cdot X)_1 = HX_1 \qquad H \in \mathbb{R}$ HX_1 is not bounded from below, unless H = 0. $\implies \mathcal{H}^1 = \{0\}.$ Take $u(x) = -e^{-x}$, then sup $E[u(x + HX_1)] = u(x + 0) = -e^{-x}$. $H \in \mathcal{H}^1$ $\sup_{H \in \mathcal{U}} E[u(x + HX_1)] = -e^{-(x + \frac{1}{2}\frac{\mu^2}{\sigma^2})} > -e^{-x}.$ $H \in \mathcal{H}$ The maximizer is given by

$$H^* = \frac{\mu}{\sigma} \notin \mathcal{H}^1$$
, if $\mu \neq 0$.

DEFINITION

Let $W \in L^0(P)$ be a fixed random variable s.t.

 $W \geq 1 P - a.s.$, but possibly unbounded from above.

The \mathbb{R}^d -valued predictable X-integrable process H is W-admissible, or it belongs to \mathcal{H}^W , if:

• there exists a constant $c \ge 0$ such that, *P*-a.s.

 $(H \cdot X)_t \ge -cW \quad \forall t \le T.$

(hence $(H \cdot X)_t$ can be unbounded from above and **from below**)

Accepting a greater risk will increase the expected utility.

Note that

$$\mathcal{H}^1 \subseteq \mathcal{H}^W,$$

since $W \geq 1$.

W is SUITABLE

(W is sufficiently large)

DEFINITION:

A random variable $W \in L^0(P)$ is **suitable** if $W \ge 1 P - a.s.$ and

for all $1 \le i \le d$ there exists a process H^i such that:

$$-W \leq (H^i \cdot X^i)_t \leq W, \text{ for all } t \in [0, T]$$
$$.P(\{\omega \mid \exists t \geq 0 H^i_t(\omega) = 0\}) = 0.$$

(" $H^i \neq 0$ " and both investments H^i and $-H^i$ in the single asset X^i are "W-admissible").

PROPOSITION:

If X is locally bounded, then

the constant 1 is suitable.

W is COMPATIBLE with u

(W not too large)

$$\alpha^W(x) \triangleq \sup \{ \alpha \ge 0 \mid E[u(x - \alpha W)] > -\infty \} \in [0, +\infty].$$

DEFINITION:

A random variable $W \in L^0(P)$ is **compatible** if $W \ge 1 P - a.s.$ and

$$\exists \alpha > 0 \text{ such that } E[u(x - \alpha W)] > -\infty.$$
 ((*))

or equivalently if

 $\alpha^W(x) > 0.$

REMARK on Cramer's condition. If $u(x) = -e^{-x}$, then (*) holds iff

 $\exists \alpha > 0$ such that $E[e^{\alpha W}] < \infty$.

DEFINITION: \mathcal{W} is the set of all **suitable and compatible** random v.;

 $\mathcal{W}_{\infty} \triangleq \left\{ W \in \mathcal{W} : \alpha^{W}(x) = +\infty \right\}.$

On "compatibility" conditions

$$\alpha^{W}(x) \triangleq \sup \left\{ \alpha \ge 0 \mid E[u(x - \alpha W)] > -\infty \right\}.$$

$$W \in L^{\infty},$$

$$\forall \alpha > 0 E[u(x - \alpha W)] > -\infty,$$

$$\exists \alpha > 0 E[u(x - \alpha W)] > -\infty.$$
(1)
(2)
(3)

Obviously: (2) $\Leftrightarrow \alpha^W(x) = \infty$, (3) $\Leftrightarrow \alpha^W(x) > 0$, (1) \Rightarrow (2) \Rightarrow (3)

The strongest condition (1) leads to classical 1–admissibility: $\mathcal{H}^W = \mathcal{H}^1$

The weaker compatibility condition (2) is studied in Biagini-F. (2004) and leads to:

i) **Uniformity results** w.r.to $W \in \mathcal{W}_{\infty}$:

the optimal value & the optimal solution do not depend on which W is selected in \mathcal{W}_∞

ii) dual variables that are **probability measures**

The weakest condition (3) will lead to dual variables that are only in $ba_+(1)$.

ASSUMPTION (1):

 $u : \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ is increasing strictly concave and differentiable on the interior $\mathcal{I} = (a, +\infty)$ of its effective domain and:

$$u'(a) \triangleq \lim_{x \downarrow a} u'(x) = +\infty, u'(+\infty) \triangleq \lim_{x \uparrow +\infty} u'(x) = 0.$$

W.I.o.g., either $\mathcal{I} = (0, +\infty)$ or $\mathcal{I} = (-\infty, +\infty)$.

If $u : \mathbb{R} \to \mathbb{R}$ then: u has Reasonable Asymptotic Elasticity - **RAE**(u) - as introduced by Schachermayer (and Kramkov - Schachermayer)

(i)
$$AE_{-\infty}(u) \triangleq \liminf_{x \to -\infty} \frac{xu'(x)}{u(x)} > 1$$

(ii) $AE_{+\infty}(u) \triangleq \limsup_{x \to +\infty} \frac{xu'(x)}{u(x)} < 1$

If $u : (0, +\infty) \to \mathbb{R}$ then: $AE_{+\infty}(u) < 1$.

NOTE: This condition is needed even in the locally bounded case to avoid pathological phenomena.

ASSUMPTION (2) :

 $W \in \mathcal{W} \neq \varnothing$

(i.e. there exists a suitable and compatible **loss** random variable W)

REMARKS

(i) Suppose *X* locally bounded. Then:

Assumption (2) is automatically satisfied since $W = 1 \in \mathcal{W}$.

(ii) General X (not nec. positive or loc. bounded),

If $\mathcal{I} = (0, +\infty)$ the assumption (2) implies

x > 0 and $W \in L^{\infty}$,

.since $E[u(x - \alpha W)] > -\infty \Rightarrow x - \alpha W \ge 0$

In this case, w.l.o.g. we select

$$W = 1$$
 and $\mathcal{H}^W = \mathcal{H}^1$.

Definitions of P_{Φ} and M_{σ}

The convex conjugate $\Phi : \mathbb{R}_+ \to \mathbb{R}$ of u is:

$$\Phi(y) = \sup_{x \in \mathbb{R}} \left\{ u(x) - xy \right\}.$$

DEFINITION

$$\mathcal{P}_{\Phi} = \{\xi \in L^1_+(P) \mid E[\Phi(\xi)] < +\infty\}.$$

If $\xi = \frac{dQ}{dP}$ then $Q \ll P$ has finite entropy.

DEFINITION

$$M_{\sigma} = \{Q \ll P : X \text{ is a } \sigma - \text{martingale w.r.to } Q\}$$

is the set of Sigma martingale probability m.

Essentially, X is a σ -martingale if each component X^i can be written as a stochastic integral of a local martingale N^i .

 M_{σ} replaces the set of loc. martingale measures, that was adequate when X was assumed locally bounded.

Nice mathematical properties when $W \in W$

Let $W \in L^0(P)$ and define:

$$M_{\sigma,W} \triangleq \{Q \in M_{\sigma} \mid E_Q[W] < +\infty\};$$

$$M_{sup,W} \triangleq \{Q \ll P \mid E_Q[W] < +\infty \text{ and }$$

$$H \cdot X \text{ is a } Q\text{-supermart. } \forall H \in \mathcal{H}^W\};$$

$$M_{T,W} \triangleq \{Q \ll P \mid E_Q[W] < +\infty \ (H \cdot X)_T \in L^1(Q), \\ E_Q[(H \cdot X)_T] \leq 0 \ \forall H \in \mathcal{H}^W \}.$$

LEMMA:

Let $W \in \mathcal{W}$ and suppose that $M_{\sigma,W} \neq \emptyset$ Then:

$$M_{\sigma,W} = M_{sup,W} = M_{T,W}.$$

and

$$M_{\sigma,W} \cap \mathcal{P}_{\Phi} = M_{\sigma} \cap \mathcal{P}_{\Phi}.$$

 $M_{\sigma} \cap \mathcal{P}_{\Phi}$ will be the relevant set of "pricing" probability measures, when $\alpha^{W}(x) = +\infty$

Dual Varables

 $(L^{\infty}(P), ba(P))$

$$H \in \mathcal{H}^{W} \text{ if } (H \cdot X)_{t} \geq -cW \quad \forall t \leq T.$$

$$K^{W} = \left\{ (H \cdot X)_{T} \mid H \in \mathcal{H}^{W} \right\}$$

The following set replaces the set of bounded super-replicable claims:

$$\mathcal{C}_W \triangleq \left(\frac{K^W}{W} - L^0_+(P)\right) \cap L^\infty(P)$$
$$= \left\{ f \in L^\infty(P) \mid f \ge k \text{ and } k \in \frac{K^W}{W} \right\}.$$

By Fatou:

$$\sup_{k \in K^W} E[u(x+k)] = \sup_{k \in \frac{K^W}{W}} E[u(x+kW)]$$
$$= \sup_{f \in \mathcal{C}_W} E[u(x+fW)]$$
$$= \inf_{z \in (\mathcal{C}_W)^0} \dots$$

The set of dual variables is:

$$\mathcal{Z}_W \triangleq \mathcal{C}_W^{\mathsf{O}}$$

$$\mathcal{Z}_W \triangleq \{z \in ba \mid z(f) \leq 0 \text{ for all } f \in \mathcal{C}_W\} \subseteq ba_+$$

REMARK:

$$z \in \mathcal{Z}_W \quad \Longleftrightarrow \quad z_r(\frac{k}{W}) + z_s(\frac{k}{W}) \le 0 \text{ for all } k \in K^W,$$

where, by Yosida-Hewitt,

$$z = z_r + z_s \in ca \oplus pa$$

How can we interpret the dual variables $z \in \mathcal{Z}_W$ as pricing operators ?

On dual variables and σ -martingale measures

After normalization, each dual variable $z \in \mathcal{Z}_W$ having zero singular component is a sigma martingale measure.

$$z \in \mathcal{Z}_W \Leftrightarrow z_r(\frac{k}{W}) + z_s(\frac{k}{W}) \le 0$$
 for all $k \in K^W$.

Let \mathcal{Z}_W^r be the set of **true** measures in \mathcal{Z}_W , that is

$$\mathcal{Z}_W^r = \mathcal{Z}_W \cap L^1(P)$$

(possibly empty)

PROPOSITION:

If $Q \in M_{\sigma,W}$ then $z \triangleq Q(W \bullet) \in \mathcal{Z}_W^r$.

Viceversa, if
$$z \in \mathcal{Z}_W^r$$
, then $Q \triangleq \frac{z(\bullet \frac{1}{W})}{z(1/W)} \in M_{\sigma,W}$.

RESULTS

- 1. Existence (and uniqueness) and properties of the optimal solution to primal and dual problems when X is a general semimartingale
- 2. Unifying framework for:

```
u:(0,+\infty)
ightarrow\mathbb{R} and u:(-\infty,+\infty)
ightarrow\mathbb{R}
```

- (a) same class of admissible integrands
- (b) same class of dual variables
 - 3. $\mathcal{I} = (0, +\infty)$ we recover known results (CSW)

4. $\mathcal{I} = (-\infty, +\infty) \alpha^W(x) = +\infty$

(a) $Q_s^* = 0$

- (b) uniformity with respect to $W \in \mathcal{W}_{\infty}$.
- (c) supermart. property of the optimal wealth proc.
- 5. $\mathcal{I} = (-\infty, +\infty) \alpha^W(x) < +\infty$
 - (a) sufficient conditions for $Q_s^* = 0$
 - (b) examples show that $Q_s^* \neq 0$
- 6. When big losses are admitted (w.r.to u) then the pricing functionals have a singular component (even with no random endowment).

First simple result

$$U^{\mathbf{W}}(x) \triangleq \sup_{H \in \mathcal{H}^W} E[u(x + (H \cdot X)_T)]$$

By Fatou, Fenchel, Rockafellar:

THEOREM

If $W \in \mathcal{W}$ and $U^W(x) < u(+\infty)$ then:

$$\sup_{H \in \mathcal{H}^W} E[u(x + (H \cdot X)_T)] = \sup_{k \in K^W} E[u(x + k)]$$

=
$$\sup_{k \in \frac{K^W}{W}} E[u(x + kW)] = \sup_{f \in \mathcal{C}_W} E[u(x + fW)]$$

=
$$\min_{z \in \mathcal{Z}_W} \left\{ E[\frac{x}{W} \frac{dz_r}{dP}] + E\left[\Phi(\frac{1}{W} \frac{dz_r}{dP})\right] + G(z_s) \right\} < \infty,$$

and the min is reached by an element $z^* \in \mathcal{Z}_W \subseteq ba_+$ such that $z_r^*(\Omega) > 0$.

$$\mathcal{D}_{W} \triangleq \{f \in L^{\infty} \mid E[u(x+fW)] > -\infty\}$$

$$G(z_{s}) \triangleq \sup_{f \in \mathcal{D}_{W}} \{-z_{s}(f)\}, z_{s} \in ba_{+}.$$

$$z \in \mathcal{Z}_W \longleftrightarrow \mathcal{M}_W(\Phi, G) \ni Q$$

$$Q(\bullet) = \frac{z_r(\frac{1}{W}\bullet) + z_s(\bullet)}{z_r(\frac{1}{W})}, \ z \in \mathcal{Z}_W$$

$$\mathcal{M}_W \triangleq \{ Q \in ba_+ \mid Q_r(W) < +\infty, Q_r(\Omega) = 1, \\ Q_r(k) + Q_s(\frac{k}{W}) \le 0 \text{ for all } k \in K^W \}.$$

Notice:

$$\mid Q_r \mid = 1$$

$$\sup_{\substack{H \in \mathcal{H}^{W} \\ \lambda > 0, Q \in \mathcal{M}_{W}}} E[u(x + (H \cdot X)_{T})]$$

$$= \min_{\substack{\lambda > 0, Q \in \mathcal{M}_{W}}} x\lambda + E\left[\Phi(\lambda \frac{dQ_{r}}{dP})\right] + \lambda G(Q_{s}) < \infty$$

DEFINE:

$$\mathcal{M}_W(\Phi, G) \triangleq \{ z \in \mathcal{M}_W : G(Q_s) < +\infty, \ Q_r \in P_{\Phi} \}$$

Main result (all utility functions)

$$K_{\Phi}^{G} \triangleq \left\{ f \in L^{1}(Q_{r}) \text{ and } E_{Q_{r}}[f] \leq G(Q_{s}) \ \forall Q \in \mathcal{M}_{W}(\Phi, G) \right\}$$

THEOREM

If $\sup_{H \in \mathcal{H}^W} E[u(x + (H \cdot X)_T)] < u(+\infty)$ then:

 $\mathcal{M}_W(\Phi, G) \neq \emptyset,$

the optimal solution to:

$$U_{\Phi}(x) \triangleq \sup \left\{ E[u(x+f)] \mid f \in K_{\Phi}^G \right\}$$

exists, it is given by

$$f_x \triangleq -x - \Phi'(\lambda^* \frac{dQ_r^*}{dP}) \in K_{\Phi}^G$$

where Q^* and λ^* are optimal for the dual problem

and

$$\sup_{H \in \mathcal{H}^{W}} E[u(x + (H \cdot X)_{T})]$$

$$= \min_{\lambda > 0, Q \in \mathcal{M}_{W}(\Phi, G)} x\lambda + E\left[\Phi(\lambda \frac{dQ_{r}}{dP})\right] + \lambda G(Q_{s})$$

$$= U_{\Phi}(x) = E[u(x + f_{x})],$$

$$E_{Q_r^*}[f_x] = G(Q_s^*).$$

THREE CASES

$$\alpha^{W}(x) \triangleq \sup \{ \alpha \ge 0 \mid E[u(x - \alpha W)] > -\infty \} \in [0, +\infty].$$

1. $I = (0, +\infty)$.

 $\alpha^W(x) > 0$ implies x > 0 and $W \in L^{\infty}$.

1. Then:

$$W = 1, \ \mathcal{H}^W = \mathcal{H}^1$$

2. $\mathcal{I} = (-\infty, +\infty)$ and $\alpha^W(x) = +\infty$.

3.
$$\mathcal{I} = (-\infty, +\infty)$$
 and $\alpha^W(x) < +\infty$.

FIRST CASE: $I = (0, +\infty)$ - As in CSW

Then $\alpha^W(x) > 0$ implies x > 0 and $W \in L^{\infty}$. Then: W = 1 and $\alpha^1(x) = x$ Normalize $z \in \mathcal{Z}_1 \subseteq ba_+$: $R(\cdot) \triangleq \frac{z(\cdot)}{z(\Omega)}$, so that |R| = 1

Dual variables as in Cvitanic Schachermayer Wang.

$$f_x \triangleq -x - \Phi'(\lambda^* \frac{dR_r^*}{dP}) \in K^1$$

is the optimal solution to

$$\sup \left\{ E[u(x+f)] \mid f \in K^{1} \right\}$$
$$= \sup \left\{ E[u(x+f)] \mid f \in K^{G}_{\Phi} \right\}$$

and satisfies

$$R_r^*(x+f_x)=x.$$

(we recover known results).

SECOND CASE:
$$I = (-\infty, +\infty)$$
 and $\alpha^W(x) = +\infty$

Back to $Q \in \mathcal{M}_W(\Phi, G)$, where $|Q_r| = 1$.

Since $E[u(x - \alpha W)] > -\infty$ for all $\alpha > 0$

$$\mathcal{D}_W \triangleq \{f \in L^{\infty}(P) \mid E[u(x+fW)] > -\infty\} = L^{\infty}(P)$$

$$G(Q_s) \triangleq \sup_{f \in \mathcal{D}_W} \{-Q_s(f)\} = +\infty, \text{unless } Q_s = 0.$$

Hence:

$$G(Q_s^*) = 0, \quad Q_s^*(\Omega) = 0, \quad Q_r^*(\Omega) = 1.$$

The optimal Q^* is a **true probability**!!!

$$\mathcal{M}_W(\Phi, G) = M_{\sigma} \cap \mathcal{P}_{\Phi}$$
$$K_{\Phi}^G = K_{\Phi}^0 = \left\{ f \in L^1(Q) : E_Q[f] \le 0 \ \forall Q \in M_{\sigma} \cap \mathcal{P}_{\Phi} \right\}$$

The set $M_{\sigma} \cap \mathcal{P}_{\Phi}$ does not depend on $W \in \mathcal{W}_{\infty}$

$$E_{Q_r^*}[x+f_x] = x,$$

a true expectation.

THEOREM (CASE $I = (-\infty, +\infty)$ and $\alpha^W(x) = +\infty$)

Suppose that there exists $W_0 \in \mathcal{W}_\infty$ and $x_0 \in \mathbb{R}$ such that $U^{W_0}(x_0) < u(+\infty)$. Then:

(a) $M_{\sigma} \cap \mathcal{P}_{\Phi} \neq \emptyset$;

(b) For all $W \in \mathcal{W}_{\infty}$ and all $x \in \mathbb{R}$, $U^{W}(x) < u(+\infty)$;

(c) $U^W(x)$ does **not** depend on $W \in \mathcal{W}_{\infty}$, and

$$U^{W}(x) = \min_{\lambda > 0, Q \in M_{\sigma} \cap \mathcal{P}_{\Phi}} \lambda x + E\left[\Phi\left(\lambda \frac{dQ}{dP}\right)\right];$$

(d) $\forall x \in \mathbb{R}$ there exists the optimal solution $f_x \in K^0_{\Phi}$:

$$\max\left\{E[u(x+f)] \mid f \in K_{\Phi}^{0}\right\} = E[u(x+f_{x})] = U_{\Phi}(x) < u(\infty)$$

and

$$U_{\Phi}(x) = U^{W}(x)$$
 for all $W \in \mathcal{W}_{\infty}$;

(e) If λ_x, Q_x is the optimal solution in (c), then:

$$u'(x+f_x) = \lambda_x \frac{dQ_x}{dP};$$

(f) There exists a \mathbb{R}^d -valued predictable X-integrable process H^x such that

 $f_x = (H^x \cdot X)_T \quad Q_x - a.s.$

and $H^x \cdot X$ is a Q_x -uniformly integrable martingale.

(g) Supermartingale property of $H^x \cdot X$:

If $Q_x \sim P$ then the optimal process

 $H^x \cdot X$ is a supermatingale wrt each $M_\sigma \cap P_{\Phi}$.

(h) Let $V_{\Phi}(\lambda) = \min_{Q \in M_{\sigma} \cap \mathcal{P}_{\Phi}} E[\Phi(\lambda \frac{dQ}{dP})]$ and let Q_{λ} attain the minimum. $U_{\Phi}(x) = \inf_{\lambda} \{\lambda x + V_{\Phi}(\lambda)\}$

 V_{Φ} and U_{Φ} are cont. differentiable and:

$$V'_{\Phi}(\lambda) = E[\Phi'(\lambda \frac{dQ_{\lambda}}{dP}) \frac{dQ_{\lambda}}{dP}]$$
$$xU'_{\Phi}(x) = E[u'(x+f_x)(x+f_x)]$$

WHY K_{Φ}^0 ?

$$K^{\mathbf{0}}_{\Phi} = \left\{ f \in L^{1}(Q) : E_{Q}[f] \leq \mathbf{0} \ \forall Q \in M_{\sigma} \cap \mathcal{P}_{\Phi} \right\}$$

EXAMPLE: We show what may go wrong:

(1) Arbitrage free market (NFLVR holds true); (2) $W_{\infty} \neq \emptyset$

(3) $U^W(x) < u(+\infty)$ for all $W \in \mathcal{W}_{\infty}$; (4) For each $W \in \mathcal{W}_{\infty}$ the problem $\sup_{H \in \mathcal{H}^W} E[u(x + (H \cdot X)_T)]$

does **not** admit an optimal solution $H^* \in \mathcal{H}^W$.

Therefore, the domain K^0_{Φ} larger than K^W is really needed. In general

$$f_x \in K^0_{\Phi}$$
 but $f_x \notin K^W$

However,

$$\sup_{k \in K^W} E[u(x+k)] = \sup_{k \in K^0_{\Phi}} E[u(x+k)].$$

The supermartingale property of the optimal process

(Biagini-F. 2004)

 $H^x \cdot X$ is a supermatingale w.r.to each $M_\sigma \cap P_{\Phi}$.

A bit of history

The supermartingale property of the optimal portfolio process for general semimartingales can be seen as the fourth point in the following list, concerning the case X**locally bounded**:

1. Six Authors' paper.

When $u(x) = -e^{-x}$ and the *reverse Holder inequality* holds, it was proved that the optimal wealth process is a **true martingale** wrt every loc. mart. meas. Q with finite entropy.

2. Kabanov and Stricker removed the RHI;

3. Schachermayer proved that if $Q_x \sim P$, then

 $H_x \cdot X$ is a **supermartingale** under every loc. mart. meas. with finite entropy (the true martingale property is lost for general u).

• We proved that this supermartingale property holds even for **unbounded** semimartingales.

Example 1 (Merton)

We consider a Black Scholes market with an exponential utility maximizer agent.

$$dX_t = \mu X_t dt + \sigma X_t dB_t \quad 0 \le t \le T < +\infty,$$

where B is the standard Brownian motion.

Here the process is continuous (hence locally bounded) and the hypotheses of the Theorem are satisfied with $W_0 = 1$, x arbitrary, so that:

 $U^W(x) = U^1(x)$ for any $W \in \mathcal{W}_{\infty}$.

Let $Z_t = B_t + \frac{\mu}{\sigma}t$ be the Brownian motion under the unique martingale measure Q.

It is widely known that

$$U^{1}(x) = \sup_{k \in K^{1}} E[u(x+k)] = E[-e^{-(x+\frac{\mu}{\sigma}Z_{T})}],$$

However, the function

$$f_x = \frac{\mu}{\sigma} Z_T$$

does not belong to K^1 , because it is unbounded, and no optimal solution exists in K^1 .

But if we take $W' = 1 - \inf_{t < T} Z_t$, then:

$$W' \in \mathcal{W}_{\infty}$$
 and $f_x \in K^{W'}$.

Indeed:

$$f_x = \frac{\mu}{\sigma} \int_0^T \frac{1}{\sigma X_t} dX_t$$
 with $H' = \frac{\mu}{\sigma^2 X} \in \mathcal{H}^{W'}$

This classic setup provides an example in which:

(1) \mathcal{H}^1 is strictly contained in $\mathcal{H}^{W'}$,

(2) $U^1(x) = U^{W'}(x)$.

(3) There exists an optimal solution in $\mathcal{H}^{W'}$, but not in \mathcal{H}^1 .

This enlargement of the strategies does not increase the maximum, but it is necessary to catch the optimal solution

Example 2 (not locally bounded price process)

Let $u(x) = -e^{-x}$, $\Phi(z) = z \ln z - z$, and consider the price process:

$$X_t = V I_{\{\tau \le t\}}$$

which consists of one jump of size V at the stopping time τ .

Suppose $V \sim N(\mu, \sigma^2)$, $\mu \neq 0$, and V and τ are P-independent.

$$\mathcal{H}^{1} = \{0\}, \qquad K^{1} = \{0\}$$
$$U^{1}(x) = \sup_{k \in K^{1}} E[-e^{-(x+k)}] = -e^{-x}.$$

Note that the constant 1 is NOT X-suitable, hence:

 $1 \notin \mathcal{W}_{\infty}.$

PROPOSITION:

(1) $W' \triangleq (1 + |V|) \in \mathcal{W}_{\infty} \neq \emptyset$

(2) $M_{\sigma} \cap \mathcal{P}_{\Phi} \neq \emptyset$.

(3) For all $x \in \mathbb{R}$, $U^{W'}(x) < 0 = u(+\infty)$ and $\sup_{k \in K^{W'}} E[-e^{-(x+k)}] = \min_{y > 0, Q \in M_{\sigma} \cap \mathcal{P}_{\Phi}} \left\{ xy + E[\Phi(y\frac{dQ}{dP})] \right\}$ (4)

(4) the supremum in the primal problem is a maximum, the optimal solution is

$$f^* = \frac{\mu}{\sigma^2} V \in K^{W'}$$

and the optimal value

$$U^{W'}(x) = -e^{-(x + \frac{\mu^2}{2\sigma^2})} > -e^{-x}$$

is strictly bigger than $-e^{-x}$, which is the optimal value of the maximization on the trivial domain $K^1 = \{0\}$.

Similar results can be obtained in a model with infinitely many jumps: take a Compound Poisson process on [0, T]:

$$X_t = \sum_{j \le N_t} V_j,$$

where the jumps V_j are unbounded (i.e.: $V_j \sim N(m, \sigma^2)$), with $m \neq 0$) and N_t is a Poisson process independent from $(V_j)_j$.

THIRD CASE:
$$I = (-\infty, +\infty)$$
 and $\alpha^W(x) < +\infty$

$$\mathcal{D}_W \triangleq \{ f \in L^{\infty}(P) \mid E[u(x+fW)] > -\infty \}$$

Note that

$$f_n \triangleq -n\mathbf{1}_{\{W \leq n\}} \in \mathcal{D}$$
 for all $n \geq 1$.

Hence: if $z \in ba_+$ satisfy $G(z_s) < +\infty$, then

 $z_s(\{W \le n\}) = 0$ for all $n \ge 1$.

$$z_s(f) = z_s(f \mathbf{1}_{W>n}), \ f \in L^{\infty}.$$

Define for $f \in K^W$

$$c_f \triangleq \lim_n c_n,$$

where:

$$c_n(f) = \min\{c \mid f1_{\{W > n\}} \ge -cW1_{\{W > n\}}\}$$

is the minimal c such that $f \ge -cW$ for W > n.

$$c_n(f) \triangleq \min\{c \mid fI_{\{W>n\}} \ge -cWI_{\{W>n\}}\}, \ c_n(f) \downarrow c_f$$

$$\alpha^W(x) \triangleq \sup\{\alpha \ge 0 \mid E[u(x - \alpha W)] > -\infty\} > 0.$$

PROPOSITION

Suppose that the optimal $f_x \in K^W$. Then

$$\alpha^W z_s^*(\Omega) \le G(z_s^*) = z_s^*(-\frac{f_x}{W}) \le c_{f_x} z_s^*(\Omega)$$

As a consequence:

$$c_{f_x} < \alpha^W \Rightarrow z_s^* = 0.$$

Interpretation:

When the maximum utility is reached without becoming too close to the maximum tolerated risk, the optimal charge is a true measure.

When the optimal claim 'tends' to the maximum risk, a singular part may or may not appear in the optimal Q^* : this depends also on the market model, as shown in the examples.

Example: exponential utility without bubble: $c_{f_x} < \alpha^W$

One period market model, $X_0 = 0$, X_1 doubly exponential with density: $\frac{\sqrt{3}}{2}e^{-\sqrt{3}|x-1|}$.

X is unbounded from both sides

$$W = 1 + |X_1| \text{ is suitable }, \mathcal{H}^W = \mathbb{R} \text{ and } \alpha^W(x) = \alpha^W = \sqrt{3}.$$

$$\sup_{a \in \mathbb{R}} E[-e^{-aX_1}] = \sup_{|a| < \sqrt{3}} E[-e^{-aX_1}]] = E[-e^{-X_1}] = -\frac{3}{2e} < 0 = u(+\infty).$$

$$f_x = X_1 \in K^W \text{ and } c_{f_x} = 1 < \alpha^W, \text{ then}$$

$$Q_s^* = 0$$

$$\sup_{a \in \mathbb{R}} E[-e^{-aX_1}] = \min_{\substack{Q \in ba_+ : E_{Qr}[X_1] + Q_s(\frac{X_1}{W}) = 0 \\ = -e^{-H(Q_r^*, P)} = -\frac{3}{2e}} -e^{-H(Q_r, P) - \sqrt{3}Q_s(\Omega)}$$

where $dQ_r^* = e^{-\ln(\frac{3}{2e})}e^{-X_1}dP$ is the optim. marting. m.:

 $E_{Q_r^*}[X_1] = 0.$

Example (continuation)

The relevant $Q \in \mathcal{M}_W(\Phi, G)$ satisfy $(K \ge 0)$:

$$Q_r(X_1) + Q_s([K, +\infty)) - Q_s((-\infty, -K]) = 0$$

and Q_s is null on each bounded set.

Examples of $Q \in \mathcal{M}_W(\Phi, G)$:

 $Q_r = P$

 Q_s pure charge such that:

- on the positive halfline and on every compact it is null
- it gives mass 1 to the whole negative halfline.

Then

$$Q_r(X_1) + Q_s(\frac{X_1}{1+|X_1|}) = Q_r(X_1) - Q_s((-\infty, 0])$$

= 1-1=0

Example: exponential utility with bubble, $c_{f_x} = \alpha^W$

 $\Omega_1 = \{\omega_0^1, \omega_1^1, \omega_2^1, \cdots, \omega_n^1, \cdots\} \text{ and } \Omega_2 = \mathbb{R}.$

Fix a doubly exponential variable Y on Ω_2 with density:

$$ce^{-|x|}$$

and take W = 1 + |Y|.

 $\alpha^W(x) = \alpha^W = 1.$

Let $\Omega = \Omega_1 \times \Omega_2$, \mathcal{F}_0 trivial and $\mathcal{F}_1 = \mathcal{P}(\Omega_1) \otimes \sigma(W)$.

Define: $X_0 = 0$ and $X_1 = ZW$, where $Z \in L^{\infty}(\Omega_1)$

$$Z = \begin{cases} 1 & \text{on } \omega_0^1 \\ \frac{1}{n} - 1 & \text{on } \omega_n^1, \ n \ge 1 \end{cases}$$

Let $P = P_1 \otimes P_2$, where P_2 gives Y the doubly-exp distribution and P_1 is identified with the numbers

$$p_n = P_1(\omega_n^1) > 0, n \ge 0.$$

The investor has exponential utility, hence we face (x = 0):

$$\sup_{h \in R} E[-e^{-hX_1}]$$

Selecting p_n appropriately, we show:

$$g(h) \triangleq E[-e^{-hX_1}]$$
 is finite iff $-1 < h \le 1$;

g'(h) > 0 for all $-1 < h \leq 1$

Then the maximum of g is reached when h = 1.

$$f_x = X_1, \quad \frac{dQ_r^*}{dP} = \frac{e^{-X_1}}{E[e^{-X_1}]}$$

Since g'(1) > 0,

$$G(Q_s^*) = E_{Q_r^*}[f_x] = \frac{g'(1)}{E[e^{-X_1}]} > 0$$

and $Q_{s}^{*}(\Omega) = E_{Q_{r}^{*}}[f_{x}] > 0$

Note that $c_{f_x} = 1 = \alpha^W$.