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The problem

We are interested in the utility maximization problem:

sup
H∈H

E[u(x + (H.X)T )]

u is increasing strictly concave and differentiable

x ∈ R is the initial endowment, T ∈ (0,+∞],

X = (Xt)t∈[0,T ] is an Rd−valued càd-làg semimartingale,

which models the discounted prices of d assets,

H ⊆
{

Rd − valued, predictable, X − integrable proc. H
}

is an appropriate class of “admissible” integrands

(H.X)T =
∫ T
0 Hs · dXs

*



Main issues

• X is not necessarily locally bounded

• New concept of W−admissibility

(H · X)t ≥ −cW ∀t ≤ T,

• Unified treatment - via duality - of the cases

u : (0,+∞) → R and u : ( −∞,+∞) → R.

• On compatibility conditions on the losses W admitted in trading:

∃α > 0 such that E[u(x − αW )] > −∞.

• the dual variables, i.e. ”the sigma martingale measures” in general belong to

ba+(1)

Big losses (given u) =⇒ bubbles



Definition of ”classical” admissible strategies

DEFINITION

A trading strategy H is admissible (we will say 1−admissible) if there exists a con-

stant c ∈ R such that, P − a.s.,

(H · X)t ≥ −c1 for all t ∈ [0, T ].

H1 is the class of these 1−admissible strategies.

In the non locally bounded case it can happen that:

H1 = {0}
and this fact forces us to introduce the less restrictive notion of W−admissibility, in

order to provide a non trivial enlargement of the class H1.



Motivation

X = (X0, X1) one period process with

X0 = 0 and X1 ∼ N(µ, σ2)

H = {H predictable and X − integrable} = R

(H · X)1 = HX1 H ∈ R

HX1 is not bounded from below, unless H = 0.

=⇒ H1 = {0} .

Take u(x) = −e−x, then

sup
H∈H1

E[u(x + HX1)] = u(x + 0) = −e−x.

sup
H∈H

E[u(x + HX1)] = −e
−(x+1

2
µ2

σ2)
> −e−x.

The maximizer is given by

H∗ =
µ

σ
/∈ H1, if µ 6= 0.



Definition of W − ADMISSIBLE strategies

DEFINITION

Let W ∈ L0(P ) be a fixed random variable s.t.

W ≥ 1 P− a.s., but possibly unbounded from above.

The Rd−valued predictable X−integrable process H is W−admissible, or it be-

longs to HW , if:

• there exists a constant c ≥0 such that, P -a.s.

(H · X)t ≥ −cW ∀t ≤ T.

(hence (H · X)t can be unbounded from above and from below)

Accepting a greater risk will increase the expected utility.

Note that

H1 ⊆ HW,

since W ≥ 1.



W is SUITABLE

(W is sufficiently large)

DEFINITION:

A random variable W ∈ L0(P ) is suitable if W ≥ 1 P− a.s. and

for all 1 ≤ i ≤ d there exists a process Hi such that:

−W ≤ (Hi · Xi)t ≤ W , for all t ∈ [0, T ]

.P ({ω | ∃t ≥ 0Hi
t(ω) = 0}) = 0.

(“ Hi 6= 0 ” and both investments Hi and −Hi in the single asset Xi are “W -

admissible”).

PROPOSITION:

If X is locally bounded, then

the constant 1 is suitable.



W is COMPATIBLE with u

(W not too large)

αW (x) , sup {α ≥ 0 | E[u(x − αW )] > −∞} ∈ [0,+∞].

DEFINITION:

A random variable W ∈ L0(P ) is compatible if W ≥ 1 P− a.s. and

∃α > 0 such that E[u(x − αW )] > −∞. ((*))

or equivalently if

αW (x) > 0.

REMARK on Cramer’s condition. If u(x) = −e−x, then (*) holds iff

∃α > 0 such that E[eαW ] < ∞.

DEFINITION: W is the set of all suitable and compatible random v.;

W∞ ,
{

W ∈ W : αW (x) = +∞
}

.



On ”compatibility” conditions

αW (x) , sup {α ≥ 0 | E[u(x − αW )] > −∞} .

W ∈ L∞, (1)

∀α > 0E[u(x − αW )] > −∞, (2)

∃α > 0E[u(x − αW )] > −∞. (3)

Obviously: (2) ⇔ αW (x) = ∞ , (3) ⇔ αW (x) > 0, (1) ⇒ (2) ⇒ (3)

The strongest condition (1) leads to classical 1−admissibility: HW = H1

The weaker compatibility condition (2) is studied in Biagini-F. (2004) and leads to:

i) Uniformity results w.r.to W ∈ W∞ :

the optimal value & the optimal solution do not depend on which W is selected in

W∞

ii) dual variables that are probability measures

The weakest condition (3) will lead to dual variables that are only in ba+(1).



ASSUMPTION (1):

u : R → R∪{−∞} is increasing strictly concave and differentiable on the interior

I = (a,+∞) of its effective domain and:

u′(a) , lim
x↓a

u′(x) = +∞, u′(+∞) , lim
x↑+∞

u′(x) = 0.

W.l.o.g., either I = (0,+∞) or I = (−∞,+∞).

If u : R → R then: u has Reasonable Asymptotic Elasticity - RAE(u) - as introduced

by Schachermayer (and Kramkov - Schachermayer)

(i) AE−∞(u) , lim inf
x→−∞

xu′(x)
u(x)

> 1

(ii) AE+∞(u) , lim sup
x→+∞

xu′(x)
u(x)

< 1

If u : (0,+∞) → R then: AE+∞(u) < 1.

NOTE: This condition is needed even in the locally bounded case to avoid pathologi-

cal phenomena.



ASSUMPTION (2) :

W ∈ W 6= ∅

(i.e. there exists a suitable and compatible loss random variable W )

REMARKS

(i) Suppose X locally bounded. Then:

Assumption (2) is automatically satisfied since W = 1 ∈ W .

(ii) General X (not nec. positive or loc. bounded),

If I = (0,+∞) the assumption (2) implies

x > 0 and W ∈ L∞,

.since E[u(x − αW )] > −∞ ⇒ x − αW ≥ 0

In this case, w.l.o.g. we select

W = 1 and HW = H1.



Definitions of PΦ and Mσ

The convex conjugate Φ : R+ → R of u is:

Φ(y) = sup
x∈R

{u(x) − xy} .

DEFINITION

PΦ = {ξ ∈ L1
+(P ) | E[Φ(ξ)] < +∞}.

If ξ = dQ
dP then Q ¿ P has finite entropy.

DEFINITION

Mσ = {Q ¿ P : X is a σ − martingale w.r.to Q}
is the set of Sigma martingale probability m.

Essentially, X is a σ−martingale if each component Xi can be written as a stochastic

integral of a local martingale Ni.

Mσ replaces the set of loc. martingale measures, that was adequate when X was

assumed locally bounded.



Nice mathematical properties when W ∈ W

Let W ∈ L0(P ) and define:

Mσ,W , {Q ∈ Mσ | EQ[W ] < +∞};

Msup,W , {Q ¿ P |EQ[W ] < +∞ and

H · X is a Q-supermart. ∀H ∈ HW};

MT,W , {Q ¿ P |EQ[W ] < +∞ (H · X)T ∈ L1(Q),

EQ[(H · X)T ] ≤ 0∀H ∈ HW}.
LEMMA:

Let W ∈ W and suppose that Mσ,W 6= ∅ Then:

Mσ,W = Msup,W = MT,W .

and

Mσ,W ∩ PΦ = Mσ ∩ PΦ.

Mσ ∩ PΦ will be the relevant set of ”pricing” probability measures, when αW (x) =

+∞



Dual Varables

(L∞(P ), ba(P ))

H ∈ HW if (H · X)t ≥ −cW ∀t ≤ T.

KW =
{

(H · X)T | H ∈ HW
}

The following set replaces the set of bounded super-replicable claims:

CW , (
KW

W
− L0

+(P )) ∩ L∞(P )

=

{

f ∈ L∞(P ) | f ≥ k and k ∈ KW

W

}

.

By Fatou:

sup
k∈KW

E[u(x + k)] = sup

k∈KW
W

E[u(x + kW )]

= sup
f∈CW

E[u(x + fW )]

= inf
z∈(CW )0

...



The set of dual variables is:

ZW , C0
W

ZW , {z ∈ ba | z(f) ≤ 0 for all f ∈ CW} ⊆ ba+

REMARK:

z ∈ ZW ⇐⇒ zr(
k

W
) + zs(

k

W
) ≤ 0 for all k ∈ KW,

where, by Yosida-Hewitt,

z = zr + zs ∈ ca ⊕ pa

How can we interpret the dual variables z ∈ ZW as pricing operators ?



On dual variables and σ−martingale measures

After normalization, each dual variable z ∈ ZW having zero singular component is

a sigma martingale measure.

z ∈ ZW ⇔ zr(
k

W
) + zs(

k

W
) ≤ 0 for all k ∈ KW.

Let Zr
W be the set of true measures in ZW , that is

Zr
W = ZW ∩ L1(P )

(possibly empty)

PROPOSITION:

If Q ∈ Mσ,W then z , Q(W•) ∈ Zr
W .

Viceversa, if z ∈ Zr
W , then Q ,

z(• 1
W )

z(1/W )
∈ Mσ,W .



RESULTS

1. Existence (and uniqueness) and properties of the optimal solution to primal and

dual problems when X is a general semimartingale

2. Unifying framework for:

u : (0,+∞) → R and u : ( −∞,+∞) → R

(a) same class of admissible integrands

(b) same class of dual variables

3. I = (0,+∞) we recover known results (CSW)



4. I = ( −∞,+∞) αW (x) = +∞

(a) Q∗
s = 0

(b) uniformity with respect to W ∈ W∞.

(c) supermart. property of the optimal wealth proc.

5. I = ( −∞,+∞) αW (x) < +∞

(a) sufficient conditions for Q∗
s = 0

(b) examples show that Q∗
s 6= 0

6. When big losses are admitted (w.r.to u) then the pricing functionals have a sin-

gular component (even with no random endowment).



First simple result

UW(x) , sup
H∈HW

E[u(x + (H · X)T )]

By Fatou, Fenchel, Rockafellar:

THEOREM

If W ∈ W and UW (x) < u(+∞) then:

sup
H∈HW

E[u(x + (H · X)T )] = sup
k∈KW

E[u(x + k)]

= sup

k∈KW
W

E[u(x + kW )] = sup
f∈CW

E[u(x + fW )]

= min
z∈ZW

{

E[
x

W

dzr

dP
] + E

[

Φ(
1

W

dzr

dP
)

]

+ G(zs)

}

< ∞,

and the min is reached by an element z∗ ∈ ZW ⊆ ba+ such that z∗r(Ω) > 0.

DW , {f ∈ L∞ | E[u(x + fW )] > −∞}
G(zs) , sup

f∈DW

{−zs(f)} , zs ∈ ba+.



z ∈ ZW ←→ MW (Φ, G) 3 Q

Q(•) =
zr(

1
W •) + zs(•)

zr(
1
W )

, z ∈ ZW

MW , {Q ∈ ba+ | Qr(W ) < +∞, Qr(Ω) = 1,

Qr(k) + Qs(
k

W
) ≤ 0 for all k ∈ KW}.

Notice:

| Qr |= 1

sup
H∈HW

E[u(x + (H · X)T )]

= min
λ>0,Q∈MW

xλ + E

[

Φ(λ
dQr

dP
)

]

+ λG(Qs) < ∞

DEFINE:

MW (Φ, G) , {z ∈ MW : G(Qs) < +∞, Qr ∈ PΦ}



Main result (all utility functions)

KG
Φ ,

{

f ∈ L1(Qr) and EQr[f ] ≤ G(Qs) ∀Q ∈ MW (Φ, G)
}

THEOREM

If supH∈HW E[u(x + (H · X)T )] < u(+∞) then:

MW (Φ, G) 6= ∅,

the optimal solution to:

UΦ(x) , sup
{

E[u(x + f)] | f ∈ KG
Φ

}

exists, it is given by

fx , −x − Φ′(λ∗dQ∗
r

dP
) ∈ KG

Φ

where Q∗ and λ∗ are optimal for the dual problem



and

sup
H∈HW

E[u(x + (H · X)T )]

= min
λ>0,Q∈MW (Φ,G)

xλ + E

[

Φ(λ
dQr

dP
)

]

+ λG(Qs)

= UΦ(x) = E[u(x + fx)],

EQ∗
r
[fx] = G(Q∗

s).



THREE CASES

αW (x) , sup {α ≥ 0 | E[u(x − αW )] > −∞} ∈ [0,+∞].

1. I = (0,+∞).

αW (x) > 0 implies x > 0 and W ∈ L∞.

1. Then:

W = 1, HW = H1

2. I = (−∞,+∞) and αW (x) = +∞.

3. I = (−∞,+∞) and αW (x) < +∞.



FIRST CASE: I = (0,+∞) - As in CSW

Then αW (x) > 0 implies x > 0 and W ∈ L∞. Then:

W = 1 and α1(x) = x

Normalize z ∈ Z1 ⊆ ba+: R(·) ,
z(·)
z(Ω)

, so that| R |= 1

Dual variables as in Cvitanic Schachermayer Wang.

fx , −x − Φ′(λ∗dR∗
r

dP
) ∈ K1

is the optimal solution to

sup
{

E[u(x + f)] | f ∈ K1
}

= sup
{

E[u(x + f)] | f ∈ KG
Φ

}

and satisfies

R∗
r(x + fx) = x.

(we recover known results).



SECOND CASE: I = (−∞,+∞) and αW (x) = +∞

Back to Q ∈ MW (Φ, G), where| Qr |= 1.

Since E[u(x − αW )] > −∞ for all α > 0

DW , {f ∈ L∞(P ) | E[u(x + fW )] > −∞} = L∞(P )

G(Qs) , sup
f∈DW

{−Qs(f)} = +∞, unless Qs = 0.

Hence:

G(Q∗
s) = 0, Q∗

s(Ω) = 0, Q∗
r(Ω) = 1.

The optimal Q∗ is a true probability!!!

MW (Φ, G) = Mσ ∩ PΦ

KG
Φ = K0

Φ =
{

f ∈ L1(Q) : EQ[f ] ≤ 0 ∀Q ∈ Mσ ∩ PΦ

}

The set Mσ ∩ PΦ does not depend on W ∈ W∞

EQ∗
r
[x + fx] = x,

a true expectation.



THEOREM (CASE I = (−∞,+∞) and αW (x) = +∞)

Suppose that there exists W0 ∈ W∞ and x0 ∈ R such that UW0(x0) < u(+∞).

Then:

(a) Mσ ∩ PΦ 6= ∅;

(b) For all W ∈ W∞ and all x ∈ R, UW (x) < u(+∞);

(c) UW (x) does not depend on W ∈ W∞, and

UW (x) = min
λ>0,Q∈Mσ∩PΦ

λx + E

[

Φ

(

λ
dQ

dP

)]

;

(d) ∀x ∈ R there exists the optimal solution fx ∈ K0
Φ :

max
{

E[u(x + f)] | f ∈ K0
Φ

}

= E[u(x + fx)] = UΦ(x) < u(∞)

and

UΦ(x) = UW (x) for all W ∈ W∞;

(e) If λx, Qx is the optimal solution in (c), then:

u′(x + fx) = λx
dQx

dP
;



(f) There exists a Rd−valued predictable X−integrable process Hx such that

fx = (Hx · X)T Qx − a.s.

and Hx · X is a Qx-uniformly integrable martingale.

(g) Supermartingale property of Hx · X:

If Qx ∼ P then the optimal process

Hx · X is a supermatingale wrt each Mσ ∩ PΦ.

(h) Let VΦ(λ) = minQ∈Mσ∩PΦ
E[Φ(λdQ

dP )] and let Qλ attain the minimum.

UΦ(x) = inf
λ

{

λx + VΦ(λ)
}

VΦ and UΦ are cont. differentiable and:

V ′
Φ(λ) = E[Φ′(λ

dQλ

dP
)
dQλ

dP
]

xU ′
Φ(x) = E[u′(x + fx)(x + fx)]



WHY K0
Φ ?

K0
Φ =

{

f ∈ L1(Q) : EQ[f ] ≤ 0 ∀Q ∈ Mσ ∩ PΦ

}

EXAMPLE: We show what may go wrong:

(1) Arbitrage free market (NFLVR holds true); (2) W∞ 6= ∅

(3) UW (x) < u(+∞) for all W ∈ W∞; (4) For each W ∈ W∞ the problem

sup
H∈HW

E[u(x + (H · X)T )]

does not admit an optimal solution H∗ ∈ HW.

Therefore, the domain K0
Φ larger than KW is really needed. In general

fx ∈ K0
Φ but fx /∈ KW .

However,

sup
k∈KW

E[u(x + k)] = sup
k∈K0

Φ

E[u(x + k)].



The supermartingale property of the optimal process

(Biagini-F. 2004)

Hx · X is a supermatingale w.r.to each Mσ ∩ PΦ.

A bit of history

The supermartingale property of the optimal portfolio process for general semimartin-

gales can be seen as the fourth point in the following list, concerning the case X

locally bounded:

1. Six Authors’ paper.

When u(x) = −e−x and the reverse Holder inequality holds, it was proved that

the optimal wealth process is a true martingale wrt every loc. mart. meas. Q

with finite entropy.

2. Kabanov and Stricker removed the RHI;



3. Schachermayer proved that if Qx ∼ P , then

Hx · X is a supermartingale under every loc. mart. meas. with finite entropy

(the true martingale property is lost for general u).

• We proved that this supermartingale property holds even for unbounded semi-

martingales.



Example 1 (Merton)

We consider a Black Scholes market with an exponential utility maximizer agent.

dXt = µXtdt + σXtdBt 0 ≤ t ≤ T < +∞,

where B is the standard Brownian motion.

Here the process is continuous (hence locally bounded) and the hypotheses of the

Theorem are satisfied with W0 = 1, x arbitrary, so that:

UW (x) = U1(x) for any W ∈ W∞.

Let Zt = Bt +
µ
σt be the Brownian motion under the unique martingale measure Q.

It is widely known that

U1(x) = sup
k∈K1

E[u(x + k)] = E[−e−(x+µ
σZT )],

However, the function

fx =
µ

σ
ZT

does not belong to K1, because it is unbounded, and no optimal solution exists in

K1.



But if we take W ′ = 1 − inft≤T Zt, then:

W ′ ∈ W∞ and fx ∈ KW ′
.

Indeed:

fx =
µ

σ

∫ T

0

1

σXt
dXt with H ′ =

µ

σ2X
∈ HW ′

This classic setup provides an example in which:

(1) H1 is strictly contained in HW ′
,

(2) U1(x) = UW ′
(x).

(3) There exists an optimal solution in HW ′
, but not in H1.

This enlargement of the strategies does not increase the maximum, but it is

necessary to catch the optimal solution



Example 2 (not locally bounded price process)

Let u(x) = −e−x, Φ(z) = z ln z − z, and consider the price process:

Xt = V I{τ≤t}
which consists of one jump of size V at the stopping time τ .

Suppose V ∼ N(µ, σ2), µ 6= 0, and V and τ are P−independent.

H1 = {0}, K1 = {0}

U1(x) = sup
k∈K1

E[−e−(x+k)] = −e−x.

Note that the constant 1 is NOT X−suitable, hence:

1 /∈ W∞.

PROPOSITION:

(1) W ′ , (1 + |V |) ∈ W∞ 6= ∅

(2) Mσ ∩ PΦ 6= ∅.



(3) For all x ∈ R, UW ′
(x) < 0 = u(+∞) and

sup
k∈KW ′

E[−e−(x+k)] = min
y>0,Q∈Mσ∩PΦ

{

xy + E[Φ(y
dQ

dP
)]

}

(4)

(4) the supremum in the primal problem is a maximum, the optimal solution is

f∗ =
µ

σ2
V ∈ KW ′

and the optimal value

UW ′
(x) = −e

−(x+ µ2

2σ2)
> −e−x

is strictly bigger than −e−x, which is the optimal value of the maximization on the

trivial domain K1 = {0}.

Similar results can be obtained in a model with infinitely many jumps: take a Com-

pound Poisson process on [0, T ]:

Xt =
∑

j≤Nt

Vj,

where the jumps Vj are unbounded (i.e.:Vj ∼ N(m, σ2), with m 6= 0) and Nt is a

Poisson process independent from (Vj)j.



THIRD CASE: I = (−∞,+∞) and αW (x) < +∞

DW , {f ∈ L∞(P ) | E[u(x + fW )] > −∞}

Note that

fn , −n1{W≤n} ∈ D for all n ≥ 1.

Hence: if z ∈ ba+ satisfy G(zs) < +∞, then

zs({W ≤ n}) = 0 for all n ≥ 1.

zs(f) = zs(f1W>n), f ∈ L∞.

Define for f ∈ KW

cf , lim
n

cn,

where:

cn(f) = min{c | f1{W>n} ≥ −cW1{W>n}}
is the minimal c such that f ≥ −cW for W > n.



cn(f) , min{c | fI{W>n} ≥ −cWI{W>n}}, cn(f) ↓ cf

αW (x) , sup {α ≥ 0 | E[u(x − αW )] > −∞} > 0.

PROPOSITION

Suppose that the optimal fx ∈ KW . Then

αWz∗s(Ω) ≤ G(z∗s) = z∗s(−
fx

W
) ≤ cfxz

∗
s(Ω)

As a consequence:

cfx < αW ⇒ z∗s = 0.

Interpretation:

When the maximum utility is reached without becoming too close to the maximum

tolerated risk, the optimal charge is a true measure.

When the optimal claim ’tends’ to the maximum risk, a singular part may or may not

appear in the optimal Q∗: this depends also on the market model, as shown in the

examples.



Example: exponential utility without bubble: cfx < αW

One period market model, X0 = 0, X1 doubly exponential with density:
√

3
2 e−

√
3|x−1|.

X is unbounded from both sides

W = 1 + |X1| is suitable , HW = R and αW (x) = αW =
√

3.

sup
a∈R

E[−e−aX1] = sup
|a|<

√
3

E[−e−aX1)] = E[−e−X1] = − 3

2e
< 0 = u(+∞).

fx = X1 ∈ KW and cfx = 1 < αW , then

Q∗
s = 0

sup
a∈R

E[−e−aX1] = min
Q∈ba+:EQr[X1]+Qs(

X1
W )=0

−e−H(Qr,P )−
√

3Qs(Ω)

= −e−H(Q∗
r,P ) = − 3

2e

where dQ∗
r = e− ln( 3

2e)e−X1dP is the optim. marting. m.:

EQ∗
r
[X1] = 0.



Example (continuation)

The relevant Q ∈ MW (Φ, G) satisfy (K ≥ 0):

Qr(X1) + Qs([K,+∞)) − Qs((−∞,−K]) = 0

and Qs is null on each bounded set.

Examples of Q ∈ MW (Φ, G):

Qr = P

Qs pure charge such that:

• on the positive halfline and on every compact it is null

• it gives mass 1 to the whole negative halfline.

Then

Qr(X1) + Qs(
X1

1 + |X1|
) = Qr(X1) − Qs((−∞,0])

= 1 − 1 = 0



Example: exponential utility with bubble, cfx = αW

Ω1 = {ω1
0, ω1

1, ω1
2, · · · , ω1

n, · · · } and Ω2 = R.

Fix a doubly exponential variable Y on Ω2 with density:

ce−|x|

and take W = 1 + |Y |.

αW (x) = αW = 1.

Let Ω = Ω1 × Ω2, F0 trivial and F1 = P(Ω1) ⊗ σ(W ).

Define: X0 = 0 and X1 = ZW , where Z ∈ L∞(Ω1)

Z =

{

1 on ω1
0

1
n − 1 on ω1

n, n ≥ 1

Let P = P1⊗ P2, where P2 gives Y the doubly-exp distribution and P1 is identified

with the numbers

pn = P1(ω
1
n) > 0, n ≥ 0.



The investor has exponential utility, hence we face (x = 0):

sup
h∈R

E[−e−hX1]

Selecting pn appropriately, we show:

g(h) , E[−e−hX1] is finite iff −1 < h ≤ 1;

g′(h) > 0 for all −1 < h ≤ 1

Then the maximum of g is reached when h = 1.

fx = X1,
dQ∗

r

dP
=

e−X1

E[e−X1]

Since g′(1) > 0,

G(Q∗
s) =EQ∗

r
[fx] =

g′(1)

E[e−X1]
>0

and Q∗
s(Ω) = EQ∗

r
[fx] > 0

Note that cfx = 1 = αW .


