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Defaultable Bonds
In the first passage structural approach, the payoft of a defaultable

zero-coupon bond written on a risky asset X is

h(X) — l{infogng Xs>B}-

By no-arbitrage, the value of the bond is

PB(t, T) — JEF {Q_T(T_t)]-{infogng X.,>B} | ft}

Using the predictable stopping time 7 = inf{s > t, X, < B}:

IE™ {l{inftgng Xs:>B} | Ft} — P*{Tt > T | ft}

This defaultable zero-coupon bond is in fact a binary down-an-out

barrier option where the barrier level and the strike price coincide.



Constant Volatility: Merton’s Approach

dXt = ’I“Xtdt + O'Xtth*

1
X: = Xpexp ((7“ — 502)75 + O'Wt*> :

In the Merton’s approach, default occurs if X < B:
Defaultable bond = European digital option

ul(t,x) = E*{e " lix,spy | Xe =2} = "IP*{Xr>B|X; =1}
= ¢ TN (dy(7))

with the usual notation 7 =T — ¢ and the distance to default:

2

log (%) + (7“— %) T

da(T) o~




Constant Volatility: Black-Cox Approach

E* {1gnt,o.or x.>B) | Fi}

_ P*{ inf ((r _ %2)(3 C ) 4o (W — W;)> > log (g) X, = x}

t<s<T

computed using distribution of minimum, or using PDE’s:

E* {Q_T(T_t)]-{iﬂftgng X.>B)} | ft} = U(t, Xt)

where u(t,z) is the solution of the following problem

Lps(c)u=0on z>B,t<T
u(t, B) =0 forany t <T
u(T,x) =1 for z > B,

which is to be solved for x > B.



Constant Volatility: Barrier Options

Using the European digital pricing function u® (¢, x)

Les(o)u®=0on z>0,t<T
u(T,z) =1 for x > B, and 0 otherwise

By the method of images one has:

u(t,r) = ul(t,z) - (%)1—3—5 . (t’ B?z)
_ () (N(d;(T 1) - (%>1—§* N t)))

where we denote




Yield Spreads Curve
The yield spread Y (0,T) at time zero is defined by

~YODT P(0, 1)
P0,T)
where P(0,T) is the default free zero-coupon bond price given here,
in the case of constant interest rate r, by P(0,7) = e~ "1, and
PB(0,T) = u(0, z), leading to the formula
1 NS
Y(0.7) = ——log N (da(T)) - (E) N (dj (T))
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Figure 1: The figure shows the sensitivity of the yield spread curve to the
volatility level. The ratio of the initial value to the default level x/B is set
to 1.3, the interest rate r is 6% and the curves increase with the values of
o: 10%, 11%, 12% and 18% (time to maturity in unit of years, plotted on
the log scale; the yield spread is quoted in basis points)
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Figure 2: This figure shows the sensitivity of the wyield spread to
the leverage level.  The wvolatility level is set to 10%, the interest

rate is 6%. The curves increases with the decreasing ratios x/B:
(1.3,1.275,1.25,1.225,1.2).



Challenge: Yields at Short Maturities

As stated by Eom et.al. (empirical analysis 2001), the challenge
for theoretical pricing models is to raise the average
predicted spread relative to crude models such as the
constant volatility model, without overstating the risks
associated with volatility or leverage.

Several approaches (within structural models) have been
proposed that aims at the modeling in this regard. These include

e Introduction of jumps (Zhou,...)
e Stochastic interest rate (Longstaff-Schwartz,...)
e Imperfect information (on X;) (Duffie-Lando,...)

e Imperfect information (on B) (Giesecke)
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Stochastic Volatility Models

dX, = pXdt+ f(Y0) X, dW
dY; = a(m —Y)dt+ vv2a th(l)

where we assume that
e f non-decreasing, 0 <c; < f < co
e Invariant distribution of Y: N (m,v?) independent of «
e o > ( is the rate of mean reversion of Y

e The standard Brownian motions W and W) are correlated

d <W<0>, W<1>> — oy di
t
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Stochastic Volatility Models under P~

In order to price defaultable bonds under this model for the
underlying we rewrite it under a risk neutral measure IP*, chosen

by the market through the market price of volatility risk A, as

follows
dX: = rXidt+ f(Ye) Xy th(O)*v
dy, = (a(m —-Y;) —vv ZOzAl(Yt)) dt + vv 2« th(l)* :

Here W(O* and WD* are standard Brownian motions under IP*
correlated as W) and W), We assume that the market price of

volatility risk Ay is bounded and a function of y only.
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Yield spread in basis points
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Figure 3: Uncorrelated slowly mean-reverting stochastic volatil-
ity: a =0.05 and p1 = 0.
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Figure 4: Correlated slowly mean-reverting stochastic volatility:
a = 0.05 and p1 = —0.05.
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Figure 5: Uncorrelated stochastic volatility: @ = 0.5 and p; = 0.
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Figure 6: Correlated stochastic volatility: a = 0.5 and p1 = —0.05.
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Figure 8: Correlated fast mean-reverting stochastic volatility:
a =10 and p; = —0.05.
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Figure 9: Highly correlated fast mean-reverting stochastic
volatility: a = 10 and p; = —0.5.
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Figure 10: High leverage correlated fast mean-reverting stochas-
tic volatility: /B = 1.2, a = 10 and p; = —0.05.
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Barrier Options under Stochastic Volatility

'U,(t’ :Ij,y) — e—T(T—t)E* {h(XT)]‘{lnftgsST XS>B} | Xt = :Ij’l/t — y} ,

PB (t7 T) — 1{i1’lf0§8§t XS>B}u(t7 Xt) Y%)
The function u(t, x,y) satisfies for x > B the problem

(%—I—Lx,y—r)u:() onx>DB,t<T
u(t, B) for any ¢t <T
(T, x

=0
U ) = h(x) for x> B

where Lx vy is the infinitestimal generator of the process (X,Y")
under IP*.
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Leading Order Term under Stochastic Volatility

In the regime « large, as in the European case, u(t, z,y) is
approximated by uj (¢, x) which solves the constant volatility

problem

Lps(c®)uf=0 on x>B,t<T
ud(t, B) =0 for any ¢t <T
us(T,x) = h(x) for x> B

where o™ is the corrected effective volatility.
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Stochastic Volatility Correction

Define the correction uj(t,z) by

Lps(c®)uy = —V;3 :1:% (xz 882;25) on x> B,t<T
ur(t,B) =0 forany t<T
uwi (T, z) =0 for x> B

Remarkably, the small parameter V3 is the same as in the European

case (calibrated to implied volatilities).
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Computation of the Correction
Define

* * 0 282u6
vi(t,x) =uj(t,z) — (T —t)V3 T (:C 52 ) :

so that vi (¢, x) solves the simpler problem

Lps(c™)v =0 on x> B, t<T
vi(t, B) = g(t) for any ¢t <T
vi(T,x) =0 for x> B

2
g(t) = —=Vs (T'—t)lim, | (:Ca% (£C2 88;20 ))
To summarize we have

o0 ( ,0%u}

wtny) ~ uta) + (0 Ve (550) 4 uit.a)

with explicit computation in the case h(z) = 1.
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Combined Two Scales Models

dX: = rX.dt+ f(Ys, Z) X, dW D

1 14 \/_ \/_ *
dy; = <8(m1Yt) 1\/— Al(Ytazt)> dt + 1\/— aw
d7, = ((5(m2 ~ 7)) — 1526 Ao (Y5, Zt)> dt + vs\/26 AW D

Time Scales:

ek 1
1/5>>1

Correlations:

d(W O W = pidt,  dWO* WE*), = podt
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Slow Factor Correction

The first correction u( )(t x) solves the problem

535(—(z))u§2> = —2 (Vo(2)2%Es + Vi (2)z2 (2%83)) on 2> B,t<T,
(Z)(t B)=0 for ¢t <T,
ul? )(T x) =0 for x> B,

where upg is evaluated at (t,x,5(z)), and Vj(z) and Vi(z) are
small parameters of order v/J, functions of the model parameters,
and depending on the current level z of the slow factor.
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Yield Spreads Calibration

1
T—I—Y(O,T) — —TlOg(U(O,ZC,y,Z))

1
7 log (1o (0, z) + w1 (0, 2) + u1,6(0,2))

- o= (505)-3 (283)

Q

Four parameters:

O'*(Z), (V07V1)7 VES
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0.12,r
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Fits to Ford Yields Spreads, 12/9/04
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Figure 12: Black-Coz and two-factor stochastic volatility fits to Ford yield
spread data. The short rate is fixed at r = 0.025. The fitted Black-Cozx
parameters are & = 0.35 and x/B = 2.875. The fitted stochastic volatility
parameters are o* = 0.385, corresponding to Rs = 0.0129, Rs = —0.012,
R1 =0.016 and Ry = —0.008.
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Fit to IBM Yield Spreads 12/01/04
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Figure 13: Black-Cox and two-factor stochastic volatility fits to IBM yield
spread data. The short rate is fixed at r = 0.025. The fitted Black-Cozx
parameters are ¢ = 0.35 and /B = 3. The fitted stochastic volatility

parameters are o = 0.36, corresponding to R2 = 0.00355, Rs = —0.0112,
R; = 0.013 and Ry = —0.0045.
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Term Structure of Default Correlation

Default times:
7, = inf{t >0, X;: < B;}
Default probabilities:
pi(T) = IP{r, <T}
p2(T) = IP{n <T, 7 <T}

Correlation coefficients:

p12(T) — p1(T)p2(T)
V1 (T)(1 = p1(T))/p2(T)(1 — pao(T))

R(T) =

32



Survival Correlation Coefficient
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Figure 14: The red curve in the figure shows the term structure of
default correlation in the case where stochastic volatilities are driven
by slowly mean reverting factors. The wvolatility functions fi1 and
f2 are exponentials with lower and upper cutoffs. The parameters are:
r = 0.06,01 = 01 = 0.2,m1 = ma2 = 0,1 =12 = 1,p, = 0.9,pzy =
—0.5,p, = 0.5,21/B1 = ©2/Bs = 1.25, and o = 0.05. The blue curve is

the corresponding correlation R(T) in the constant volatility case.
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Figure 15: The red curve in the figure shows the term structure of
default correlation in the case where stochastic volatilities are driven
by fast mean reverting factors. The volatility functions f1 and fo
are exponentials with lower and upper cutoffs. The parameters are:
r = 0.06,01 = 01 = 0.2,m1 = ma2 = 0,v1 =12 = 1,p, = 0.9,pzy =
—0.5,p, =0.5,21/B1 = x2/B2 = 1.25, and a = 10. The blue curve is the

corresponding correlation R(T') in the constant volatility case.
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Multiname Model Setup
Under risk neutral pricing probability:

dxV = rxpMdae+ (v, Z) XD awY,
dx? = rxPdt+ fo(vi, Z0) X2 aw?,
dx™ = rx™at+ £y, z)X™Maw ™,
B vy /2 V2 v
v, = |Z(my-Y,)— A(Y;, Z,))| dt aw
; 6(mY t) NG 1(Yz, Zy) + NG £
AZ, = |8(my — Z) — vyV20Ms (Y5, Zt)} dt + vy V20dW 2,

where the Wt(i)’s are independent standard Brownian motions and
AWX) Wy, = piydt, AWE WY, = p,zdt, W) W), = py ,dt.

with 700, piy < land 3310, piy < 1.
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Objective

Find the joint (risk-neutral) survival probabilities
us? = 5’5(75 X, 1Y, Z)
= P{ (1)>T (n)>T‘X,§—XYt—y,Zt—z},
where t < T, X; = (Xt(l), e ,Xt(n)), x = (x1,...,%,), and 7'( D4
the default time of firm ¢:

Tt(i) = inf{s >t X (V) < Bi(s)},

where B;(t) is the exogenously pre-specified default threshold at
time ¢ for firm i. Following Black and Cox (1976) we assume

Bz’ (t) = Kiemt,

with constant parameters K; > 0 and n; > 0.
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PDE Formulation

L0 (t,x,y,2) = 0, x;> Bi(t), foralli, t <T

1 1 )
L50 = Lo+ —L1+ Lo+ \/ng + I Mo + \/j./\/lg
£ Ve £

Boundary conditions:

s (t, Bi(t), o, ..., xn,y,2) = 0, z;>DBit), fori#1,t<T
us(t,x1, Bo(t), z3, ..., xn,y,2) = 0, x;> Bi(t), fori#2,¢t<T
us"s(t,zr;l,...,xn_l,Bn(t),y,z) = 0, z; > Bt), fori#n,t<T

Terminal condition:

(T, x1, 2o, ..., Tn,y,2) = 1, x; > By(t), for all i
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Expansion and Approximation

us® = ug -+ Veug o + \/5110,1 +eug,0 + Veouy 1 +douga + -

N

Leading Order Term ug:

<£2>U0 = 0, x;> B@'(t), for all 2, t < T
uo(tvx17°'°7Bi(t)7°"7377%) = 0, L j ZBJ(t)v for]#z,th
uo(T,z1,29,...,20,) = 1, x; > B;(t), for all
0 /1 0> 0
L = — —0;(2)%x; = i
Lo = 5 +; (2” ()i g2 tre 8%)

oi(z) = \/< 2(.,2)), () : averagew.rt. N(my,vy)
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A Formula for ug

n

uy = f[le‘ =11 [N (d2+(z')> - (%&))p N (d;(i))]

1=1

where N(-) is the standard normal distribution function,

+In 575 + (r—m — JZT(Z)) (T —1t)

by = oi(2)T — 1
oi(z) = \J(2(2),
o _2(7“—77@)
16
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Correction Term +/cu; g

<£2>’LL1,0 = A’LLQ, Xr; > Bi(t), for all 1, t <
uio(t,z1, -, Bi(t),...,xzn) = 0, x;>DB;t), forj#i,t<T
uy o(T,x1,22,...,2,) = 0, x; > B(t), for all ¢

A= (L1L" (Lo — (La))) =

v 8¢ 9 02 - Op;\ o O
7}% Zzsz <fz ) 2 j> axz < 7(9:1: ) _Z<A1(az)a—yj> ‘7833

z_l 7=1 7=1

where the ¢;’s are given by the Poisson equations w.r.t. y:
Eo@(% Z) — fz2(y7 Z) o <f22(7 Z)>

Then use ug(t, 1, -, xn) = [[;_; Qi(t, x;).
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Correction Term /0 Uo 1

<£2>U0’1 = —<M1>UO, Xr; > Bi(t),fOI‘ all 2, t < T
uo,l(t,wl,---,Bi(t),...,a;n) — O, € j sz(t), fOI’j#’L',tST
w1 (T, x1,22,...,2,) = 0, x; > B;(t), for all i.

(My) = vzV2 [Z piz{f e iy = (ol 2) 5

vy\/2 Zzpiz<f(°’z)>09(z)xi 8?1:@- (aij) — (A2(+, 2)) ZOQ(Z) 8(;

=1 j=1
Then use ug(t, 1, -+, xn) = [ 1=, Qi(t, z;).
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Homogeneous Portfolio Case

uo(t,z, -+ x) = [ [ Qi(t,2) = Q(t, )" = ¢"
1=1
VEuig = n (Rf)wf)(t, T) + R§3)w§3)(t, :1:)) "t

n(n = DR w2, 2)g"
(RO ,2) + ROl 1,2)) g

\/guo,l
nln = DRI wiZ (1 2,2)g"
Joint survival probabilities:

Sp ~ =g +Veuro+ Vougy =q" + Ang" "' + Bn(n — 1)¢"
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Loss Distribution

For N names perfectly symmetric, if L is the number of defaults by
time 7', then

Q

Ii
S
+
~
}_\
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Loss Distribution Formulas

P (L=k) ~ Io+1L+D

with
N _
b= (3)a-ate
L = A N_k—L]fo
. q 1—gq
(N — k)N —k—1) 2k(N —k) k(k—1)
I, = B _ + I
. i q? q(1—q) 1—¢)2] "
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