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Cellular Automata

CA are the ‘discrete analog’ of partial differential equations. They are

spatially distributed dynamical systems whose dynamics are driven by

local interactions governed by translationally equivariant rules.

• Space is a lattice ZD (for D ≥ 1).

• The local state at each point in the lattice is an element of a finite

alphabet, e.g. A := {0, 1}.

• The global state is a ZD-indexed configuration a : ZD−→A.

The space of such configurations is denoted AZD.

A generic element of AZD will be denoted by a :=
[

az|z∈ZD
]

.

• The evolution is governed by a map Φ : AZD−→AZD, computed by

applying a ‘local rule’ φ at every point in space.

Neighbourhood:

K ⊂ ZD (finite set)

Local rule: φ: AK−→A

Let a ∈ AZD, a :=
[

az|z∈ZD
]

.

∀z ∈ ZD, let bz := φ
[

a(k+z)|k∈K
]

.

K

φ

a

b

φ
φ

This defines new configuration b :=
[

bz|z∈ZD
]

.

The CA induced by φ is function Φ: AZD −←⊃ defined: Φ(a) := b.
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Example: Elementary Cellular Automaton #62

Let D := 1, K := {−1, 0, 1}, and A := {0, 1}.

Define φ62 : {0, 1}{−1,0,1}−→{0, 1} by:

φ62(0, 0, 1) = 1; φ62(0, 0, 0) = 0;

φ62(0, 1, 0) = 1; φ62(1, 1, 0) = 0;

φ62(0, 1, 1) = 1; φ62(1, 1, 1) = 0;

φ62(1, 0, 0) = 1;

φ62(1, 0, 1) = 1.
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(white=0; black=1)

Such a nearest-neighbour CA on {0, 1}Z is called an Elementary Cel-

lular Automaton. Each ECA is described by an 8-bit binary number

(i.e. a number between 0 and 255) as follows:

If N = n0 +2n1 +22n2 +23n3 +24n4 +25n5 +26n6 +27n7 ∈ [0...255]

then φN(a0, a1, a2) := nk, where k := a0 + 2a1 + 4a2 ∈ [0...7].

For example, the CA here is ECA#62, because 21+22+23+24+25 = 62.
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Emergent Defect Dynamics in ECA#62

(∗) (α) (β) (γ)

(white=0; black=1)
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Emergent Defect Dynamics in ECA#184

(∗) (β) (γ−) (γ+)

(α+) (ω+) (α−) (ω−)
(black=0; white=1)
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Emergent Defect Dynamics in ECA#54

(∗) (α) (β) (γ+) (γ−)
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Emergent Defect Dynamics in ECA#110

(∗) (A) (B) (C)

(D1) (E) (‘extended’) (E) (F)
(black=0; white=1)
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Emergent Defect Dynamics in ECA#18

Invariant sofic subshift: 1©� 0©� 0© (the Odd Shift).

Defects are ‘phase slips’:

[. . . 00 01 00 01 01
︸ ︷︷ ︸

orange

00 00 00 00 00 00 00 00 00
︸ ︷︷ ︸

even # of zeroes

10 00 10 00 00 10
︸ ︷︷ ︸

blue

. . .].
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Defect Particle ‘Chemistry’
ECA #62 ECA #184 ECA #54

γ + β → α γ + α→ γ γ+ + γ− → ∅ γ+ + γ− → β γ+ + β → γ−

Empirical Work: • P. Grassberger [1983, 1984].

• Steven Wolfram [1983-2005]. (Mainly ECA #110).

• S. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).

• N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).

• James Crutchfield and James Hanson’s ‘Computational Mechanics’

[1992-2001]. (Also Cosma Shalizi, Wim Hordijk, Melanie Mitchell).

• Harold V. McIntosh [1999, 2000].

Theoretical Work: • Doug Lind [1984] conjectured:

(i) Defects in ECA#18 perform random walks.

(ii) Defect density decays to zero through annihilations. Thus,

ECA#18 converges ‘in measure’ to the ‘odd’ sofic shift 1©� 0©� 0©.

• Kari Eloranta [1993-1995] proved Lind’s conjecture (i); studied

quasirandom defect motion in ‘partially permutive’ CA.

• Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence

to limit sets through ‘defect annihilation’. Kůrka [2003] proved Lind’s

conjecture (ii).

• S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computa-

tionally universal (used ‘defect physics’ to engineer universal computer).
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Questions:

• Is there an ‘algebraic structure’ governing defect ‘chemistry’?

• Why do defects ‘persist’ over time instead of disappearing? Is

this related to aforementioned ‘algebraic structure’?

• What is the ‘kinematics’ by which defects propagate through space?

Formalism: Fix D ∈ N. For any r > 0, let B(r) := [−r...r]D ⊂ ZD.

Fix r > 0. Let A(r) ⊂ AB(r) be a set of of admissible r-blocks.

The subshift of finite type (SFT) determined by A(r) is the set

A :=
{

a ∈ AZD ; az+B(r) ∈ A(r), ∀ z ∈ ZD
}

For any R > 0, let A(R) be the projection of A to AB(R).

If a ∈ AZD and z ∈ ZD, then a is defective at z if az+B(r) 6∈ A(r).

The defect set of a is the set D(a) of all such z.

Let Φ : AZD−→AZD be a CA. We say A is Φ-invariant if Φ(A) ⊆ A.

Empirically, if a ∈ AZD has defects, then so does Φ(a).

We say a is finitely defective if, ∀R > 0, ∃ z ∈ ZD with aB(z,R) ∈ A(R).

Idea: a may have infinitely large defects, but a also has infinitely large

‘nondefective’ regions. Let ˜A := {finitely defective a ∈ AZD}. (A ⊂ ˜A)

Lemma: If Φ(A) ⊆ A, then Φ(˜A) ⊆ ˜A.

Also, if a ∈ ˜A and a′ = Φ(a), then the defects in a′ are ‘close’ to

corresponding defects in a. 2

The Fine Print: To extend the definition of ‘defect’ to other subshifts (not of finite type), it

is necessary to introduce a ‘detection range’ R > 0. We must then talk about ‘defects of range R’.
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Domain Boundaries

Let G(a) :=
{

z ∈ ZD ; a is not defective at z
}

. Let G(a) ⊂ RD be

the union of all unit cubes whose corner vertices are all in G(a).

The defect in a is a domain boundary∗ if G(a) is disconnected.

Examples: (a) If D = 1, then all defects are domain boundaries.

(b) (Monochromatic) Let A := {�, �}. Let Mo ⊂ AZ2
be SFT such

that no � can be adjacent to a �.

The following configuration has a domain boundary defect:

(c) (Checkerboard) Let A := {�, �}. Let Ch ⊂ AZ2
be SFT where no �

can be adjacent to a �, and no � can be adjacent to a �.

The following configuration has a domain boundary defect:

(∗) If we considering a defect of range R > 0, then technically this is a domain boundary of range

R.
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Domain Boundaries

(d) (Square ice) Let I :=

{

, , , , ,

}

.

Let Ice ⊂ IZ2
be the SFT defined by obvious edge-matching conditions.

The following configuration has a domain boundary defect:

(e) (Domino Tiling) Let D :=

{

, , ,
}

.

Let Dom ⊂ DZ2
be the SFT defined by obvious edge-matching conditions.

The following configurations have domain boundary defects:
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Persistent Defects

Let Φ : AZD−→AZD be a CA, with Φ(A) ⊆ A. Let a ∈ ˜A. The defect

in a is Φ-persistent if Φt(a) also has a defect, for all t ≥ 0.

Question: These defects seem to be persistent. Are they? Why?

Essential Defects

A defect is essential if it can’t be removed through a local change.

That is, ∀ R > 0, if a′ ∈ AZD is obtained by modifying a in an R-

neighbourhood of defect, then a′ is also defective.

Proposition: If Φ : A−→A is bijective (e.g. if A ⊆ Fix [Φ] or A ⊆
Fix [Φp] or A ⊆ Fix [Φp ◦ σq]), then any essential defect is Φ-persistent. 2

Question: These defects to be seem essential. Are they? Why?
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Cocycles

Let A ⊆ AZD be a subshift. Let (G, ·) be a (discrete) group. A

G-valued cocycle is continuous function C : ZD × A−→G satisfying

cocycle equation:

C(y + z, a) = C(y, σz(a)) ·C(z, a), ∀ a ∈ AZD and ∀ y, z ∈ ZD.
Examples: (a) Let Ice ⊂ IZ2

be square ice. Define c1, c2 : I−→{±1} by

c1( p ∗ q
∗ ∗
x y

) := +1 =: c2(
p ∗ q
∗

x ∗ y
) and c1( p ∗ q

∗ ∗
x y

) := −1 =: c2(
p ∗ q
∗

x ∗ y
) (‘∗’ means

‘anything’). Define cocycle C : Z2 × Ice−→Z as follows:

∀ i ∈ Ice, ∀ z = (z1, z2) ∈ Z2, C(z, i) :=

z1−1
∑

x=0

c1(ix,0) +

z2−1
∑

y=0

c2(iz1,y).

+1 +1 +1 +1

+1

-1 -1
-1

-1

0

z

This is a height function (a Z-valued cocycle). These arise in tilings [e.g.

K. Eloranta 1999-2005, H.Cohn & J.Propp] and statistical mechanics [R.Baxter 1989].

(b) Let Dom ⊂ DZ2
be dominoes. Let G := Z/2 ∗ Z/2 be group of finite

products vhvhv · · · vhv, where v and h are noncommuting generators

with v2 = e = h2. Define c1, c2 : D−→G by

c1( p − q
| |
x y

) := vhv; c1( p ∗ q
∗ ∗
x−y

) := h; c2(
p−q
|

x−y
) := hvh; and c2( p ∗ q

| ∗
x ∗ y

) := v.

∀ d ∈ Dom, ∀ z = (z1, z2) ∈ Z2, C(z,d) :=

z1−1
∏

x=0

c1(dx,0) ·
z2−1
∏

y=0

c2(dz1,y).

vhv vhv vhvvhvh h

hv
h

hv
h

v

0

z

(c) If b : A−→G is continuous, then functionC(z, a) := b(σz(a))·b(a)−1

is a cocycle, called a coboundary.

(d) Let X = topological space. Let H =homeo(X). Then H-valued

cocycles are the fibre-wise maps of a skew product extension of the σ-

action on A to a ZD-action on A×X. [R.Zimmer 1976-80, J.Kammeyer 1990-93]
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Cohomology

Two cocycles C and C ′ are cohomologous (C ≈ C ′) if ∃ continuous

transfer function b : A−→G such that

C ′(z, a) = b(σz(a)) · C(z, a) · b(a)−1, ∀ z ∈ ZD, and a ∈ A.

Let C := cohomology equivalence class of the cocycle C.

Z1(A,G):= {G-valued cocycles}.

H1(A,G):= {cohomology equivalence classes in Z1(A,G)}.

If (G, ·) is abelian, then Z1(A,G) is a group (under pointwise multipi-

cation), and H1(A,G) is a quotient group, called the 1st cohomology

group of A (with coefficients in G). [see e.g. K.Schmidt (1995, 1998) for discussion]

Trails and locally determined cocycles

Let E :=
{

z ∈ ZD ; z = (0, ..., 0,±1, 0, ..., 0)
}

. A trail is a sequence

ζ = (z0, z1, . . . , zN) ⊂ ZD, where, ∀n ∈ [1...N ], z′n := (zn − zn−1) ∈ E.

Let r > 0. Let c : E× A(r)−→G be such that, ∀ e, e′ ∈ E, ∀ a ∈ A,

(a) c(e′, aB(e,r)) · c(e, aB(r)) = c(e, aB(e′,r)) · c(e′, aB(r)). i.e. c
( )

= c
( )

(b) c(−e, aB(e,r)) = c(e, aB(r))
−1. i.e. c (↓) = c (↑)−1

Then c(ζ, a) :=

N
∏

n=1

c(z′n, aB(zn−1,r)) depends only on z0 and zN , not ζ.

Example: If ζ is closed (i.e. zN = z0) then c(ζ, a) = eG.

Define cocycle C : ZD × A−→G as follows: ∀ a ∈ A, z ∈ ZD,

C(z, a) := c(ζ, a), (where ζ is any trail from 0 to z). We say C is

locally determined with local rule c of radius r.

If G is discrete, then ∀ continuous G-valued cocycles are locally determined.

For any r > 0, let Z1
r (A,G):= radius-r cocycles on A.
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Cocycles and Cellular Automata

Proposition: Let A ⊂ AZD be a subshift. Let Φ : AZD−→AZD be

a cellular automaton with Φ(A) ⊆ A. Let G be a group.

(a) Let C ∈ Z1(A,G) be cocycle. Define Φ∗C : ZD × A−→G by

Φ∗C(z, a) = C(z,Φ(a)). Then Φ∗C is also a cocycle on A.

(b) If Φ has radius R, and C is locally determined with radius r, then

Φ∗C is locally determined with radius r + R.

(c) Let C,C ′ ∈ Z1(A,G). If C ≈ C ′, then Φ∗C ≈ Φ∗C ′. Thus, Φ

induces a function Φ∗ : H1(A,G)−→H1(A,G).

(d) If (G, ·) is abelian, then Φ∗ is a group endomorphism. 2

We will see that the Φ-persistence of certain kinds of defects depends

critically on the surjectivity of the endomorphism Φ∗.

Question: When is Φ∗ surjective?
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Gap Defects: Definition

Some domain boundaries exhibit divergence in cocycle asymptotics.

Let C ∈ Z1
r (A,Z) be a range-r cocycle (i.e. ‘height function’).

Let a ∈ ˜A. Let X be an infinite, simply-connected component ofGr(a).

Fix x∗ ∈ X. For any x ∈ X, we define the height difference:

Ca(x∗, x) := c(ζ, a),

where c : A(r)−→Z is ‘local rule’, and ζ is any trail in X from x∗ to x.

(Well-defined independent of ζ because X is a simply-connected.) Note:

|Ca(x∗, x)| ≤ K · dX(x∗, x),

where K:= max
a∈A(r)

|c(a)|, and dX(x∗, x):= min length (X-trail from x∗ to x).

Let Y be another infinite connected component of Gr(a). Fix y∗ ∈ Y.

For any y ∈ Y, define Ca(y, y∗) in the same way as Ca(x∗, x) above. We

then define

C(y, x) := C(y, y∗) + C(x∗, x).

If X and Y were the same connected component (or if we could remove

the defect in a so that they were), then we expect

C(y, x) ≤ K · dX(y, x) + const. ≈ K|y − x| + const.

We say there is a C-gap between X and Y if sup
y∈Y, x∈X

|C(y, x)|
|y − x|

= ∞.

(This suggests that the defect separating X and Y is essential.)

Fine print: If G 6= Z, we can also define gaps for G-valued cocycles, by first defining an appropriate

pseudonorm ‖•‖ : G−→R which satisfies the triangle inequality and is invariant under conjugation.
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Gaps in the Ice

x1 x2 x3
x4

y* y1 y2 y3 y4

x*
X

Y

Example: Consider the defective configuration in ˜Ice shown above,

and let {x∗, x1, x2, . . .} ⊂ X and {y∗, y1, y2, . . .} ⊂ Y be as shown. Let

C ∈ Z1(Ice,Z) be the cocycle with local rule

c1( p ∗ q
∗ ∗
x y

) := +1 =: c2(
p ∗ q
∗

x ∗ y
) and c1( p ∗ q

∗ ∗
x y

) := −1 =: c2(
p ∗ q
∗

x ∗ y
).

Then C(x∗, xn) = n and C(y∗, yn) = −n, so C(xn, yn) = 2n, ∀ n ∈ N.

But |xn − yn| = 2, ∀ n ∈ N, so lim
n→∞

|C(xn, yn)|
|x− y|

= lim
n→∞

2n

2
= ∞;

hence there is a gap between X and Y.

Example: Let C : Z2 ×Dom−→G := Z/2 ∗ Z/2 have local rule:

c1( p − q
| |
x y

) := vhv; c1( p ∗ q
∗ ∗
x−y

) := h; c2(
p−q
|

x−y
) := hvh; and c2( p ∗ q

| ∗
x ∗ y

) := v.

Let Z := {cyclic subgroup generated by vh} ⊂ G. Then (Z, ·) ∼= (Z,+),

and for all d ∈ Dom and 2z ∈ 2Z2, C(2z,d) ∈ Z .

Let D2 ⊂ D2×2 be the alphabet of Dom-admissible 2 × 2 blocks. Let

D2 ⊂ DZ
2

2 be ‘recoding’ of Dom in this alphabet. Then 2Z2 acts on D2 in

the obvious way, and C yields a cocycle C ′ : 2Z2 ×D2−→Z ∼= Z.
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Gaps in Dominoes

y* y1 y2 y3 y4 y5

x* x1
x2

x3
x4

x5X

Y

In the ˜Dom-configuration shown above, C ′(x∗, xn) = (vhvh)n ∼= 2n,

while C ′(y∗, yn) = h2n ∼= 0, so C ′(yn, xn) = n, for all n ∈ N.

But |xn − yn| = 4, ∀ n ∈ N, so lim
n→∞

|C ′(xn, yn)|
|x− y|

= lim
n→∞

n

4
= ∞.

X

x*

x1

x2

x3

x4

Y
y*

y1

y2

y3

y4

In the ˜Dom-configuration shown above, C ′(x∗, xn) = (vhvh)n ∼= 2n,

while C ′(y∗, yn) = (hvhv)n ∼= −2n, so C ′(yn, xn) = −4n, ∀ n ∈ N.

But |xn−yn| = 4, ∀ n ∈ N, so lim
n→∞

|C ′(xn, yn)|
|x− y|

= lim
n→∞

−4n

4
= −∞.
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Persistence of Gaps

Theorem: If Φ: AZD → AZD is a CA, Φ(A) ⊆ A, and endomorphism

Φ∗ : H1(A,Z) 3 C 7→ C ◦ Φ ∈ H1(A,Z)

is surjective, then any gap is Φ-persistent.

Example: If I := {
, , , , ,

}, and Φ : IZ2−→IZ2
is CA

with Φ(Ice) ⊆ Ice, and Φ∗ : H1(Ice,Z)−→H1(Ice,Z) is surjective, then Φ

cannot destroy the ice gap (or even change the ‘difference in slope’).

Proof idea: First show that C-gaps depend only on cohomology class of C, i.e.:

Lemma: If C ≈ C ′, then any C-gap is also a C ′-gap. ♦

Now suppose a has C-gap. Now Φ∗ is surjective, so find C ′ ∈ Z1 such that

Φ∗C
′ ≈ C. Then a also has (Φ∗C

′)-gap. But this implies that Φ(a) has C ′ gap. 2

Sharp Gaps are Essential

A gap in Gr(a) is sharp if, for all R ≥ r ≥ 0, there exists constant

K = K(R, r) ∈ N such that, for any y ∈ Gr(a), ∃ x ∈ GR(a) in same

connected component X of Gr(a) as y, with dX(x, y) ≤ K.

Idea: The gap does not ramify into lots of ‘tributaries’.

Example: If A is a subshift of finite type, and defect set D(a) is confined

to a thickened hyperplane [as in previous three examples] then the gap is sharp.

Theorem: Sharp gaps are essential defects.

Proof idea: First show:

Lemma: The existence of a gap does not depend on the choice of reference
points x∗ ∈ X and y∗ ∈ Y. ♦

Thus, we can always move our basepoint x∗ and ‘gap-detection’ sequence {x1, x2, . . .}
far away from gap. Thus, a gap is ‘detectable’ from any distance; hence it cannot

be removed by locally changing a. 2
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Defect Codimension

A domain boundary is a defect of codimension 1.

Fix r ∈ N. Let Gr(a):=
{

z ∈ ZD ; aB(z,r) ∈ A(r)

}

. (Loosely, this is

the complement of a radius-r neighbourhood around the defects in a.)

Let Gr(a) := union of all unit cubes whose corners are all in Gr(a).

We say a has a (range r) codimension (k + 1) defect if the kth

homotopy group πk [Gr(a)] is nontrivial(∗).

Examples of Codimension-Two Defects:
In Ice: In Dom:

[due to S. Lightwood, via M. Einsiedler, 2001]

The sequence of inclusions G1(a) ⊇ G2(a) ⊇ G3(a) ⊇ · · · yields

sequence of homomorphisms

πk [G1(a)]←− πk [G2(a)]←− πk [G3(a)]←− · · ·
Define πk [G∞(a)]:= inverse limit of this sequence(†) (detects ‘extremely

large scale’ homotopy properties).

Say a has a projective codimension (k+ 1) defect if πk [G∞(a)] 6= {0}.

(∗) Strictly speaking, we must fix a basepoint and a connected component of Gr.

(†) We must fix a proper base ray, and assume Gr has unique connected component for large r.
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Defect Codimension in 3D

The ‘Ice Cube’ Shift:
Codimension-1 Defect

Codimension-2 Defect

Codimension-3 Defect

(Domain boundary)
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Trail Homotopy

Let Y ⊆ ZD and let ζ and ζ ′ be trails in Y.

ζ and ζ ′ are homotopic in Y (notation: ζ ≈ ζ ′) if we can move from

ζ to ζ ′ through a sequence of transformations like:

or

ζ

ζ’

ζ

ζ’

If Y is connected, then every homotopy class of π1(Y) can be represented

as a (trail) homotopy class of trails in Y.

Hence regard π1(Y) = {group of Y-homotopy classes of Y-trails}.

Lemma: Let C ∈ Z1
r (A,G). Let a ∈ ˜A. Let ζ be closed trail in Gr(a).

(a) If ζ ≈ ζ ′ in Gr(a), then C(ζ, a) = C(ζ ′, a).

(e.g. If ζ is nullhomotopic in Gr(a), then C(ζ, a) = eG.)

(b) Suppose (G, ·) is abelian. If C ≈ C ′ then C(ζ, a) = C ′(ζ, a). 2

We say that a has a C-pole if C(ζ, a) 6= eG
for some closed trail ζ ∈ π1[Gr(a)].

Example: Recall C : Ice× Z2−→Z
c1( p ∗ q

∗ ∗
x y

) := +1 =: c2(
p ∗ q
∗

x ∗ y
)

c1( p ∗ q
∗ ∗
x y

) := −1 =: c2(
p ∗ q
∗

x ∗ y
)

If ζ is the clockwise trail around the defect,

then C(ζ, a) = 8. Thus, a has a pole. +1 +1 +1
+1

-1 +1

+1

-1
+1+1

+1

+1

+1

+1

-1

-1

12 x (+1) + 4 x (-1)  =  8
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Poles and Residues

Proposition: Let a ∈ ˜A. Let C ∈ Z1
r (A,G).

(a) ResaC : π1[Gr(a)] 3 ζ 7→ C(ζ, a) ∈ G is a group homomorphism.

(b) If (G, ·) is abelian, and C ≈ C ′ then ResaC = ResaC
′. Thus, we

get group homomorphism

Resa : Hdy(A,G)× π1[G∞(a)]× 3 (C, ζ) 7→ C(ζ, a) ∈ G. 2

The configuration a has a G-pole if Resa is nontrivial homomorphism.

The function Resa acts as an algebraic ‘signature’ of the defect in a.

Theorem: G-poles are essential defects. 2

Persistence of Poles

Theorem: If the function Φ∗ : H1(A,G) 3 C 7→ (C ◦ Φ) ∈ H1(A,G)

is surjective, then all G-poles are Φ-persistent.

Example: If Φ : IZ2−→IZ2
was a CA with Φ(Ice) ⊆ Φ(Ice), and Φ∗ was

surjective, then the ice pole would persist under Φ. ♦

Proof idea: Let R :=radius(Φ). If a ∈ ˜A and a′ := Φ(a), then Gr+R(a) ⊆ Gr(a
′).

This yields homomorphisms Φ† : π1[Gr+R(a)]−→π1[Gr(b)], for all r ∈ N.

Lemma: For all ζ ∈ π1[Gr+R(a)] and C ′ ∈ Z1
r (A,G), if ζ ′ := Φ†(ζ) and

C ≈ Φ∗(C
′), then C ′(a′, ζ ′) = C(a, ζ). ♦

Now, if a has a C-pole for some C ∈ Z1(A,G), then there exists ζ ∈ π1[Gr+R(a)]
with C(a, ζ) nontrivial.

Φ∗ is surjective, so ∃ C ′ ∈ Z1(A,G) with Φ∗C
′ ≈ C. Let ζ ′ := Φ†(ζ) ∈ π1[Gr(a

′)].

Then C ′(a′, ζ ′) = C(a, ζ) is nontrivial. Thus a′ has a C ′-pole. 2

Remark: We can also characterize poles using the fundamental cocycles of [K.Schmidt,

1998].
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The Conway-Lagarias Tiling Group

LetW be a (finite) set of notched square prototiles (to tile R2). The tile

complex of W is a 2-dimensional cell complex X defined as follows:

• For each z ∈ ZD and each w ∈ W , there is a w-shaped 2-cell in X,

positioned in space ‘over’ z. Each notched edge of w is a 1-cell in X.

• If z and z′ are adjacent in Z2, and tiles w and w′ ‘match’ along the

corresponding edge, then glue together tiles (w, z) and (w′, z′) in X.

Example: (Piece of tile-complex for Dom). Each square contains four

2-cells
{

, , ,
}

. Between each vertex-pair ∃ two edges {|, }.

∃ natural projection Π : X−→R2 (sending the vertices of X0 into Z2).
(

Admissible W-tiling w of R2
)

∼=
(

Continuous Π-section ςw : R2−→X
)

(

‘Partial’ W-tiling w of U ⊂ R2
)

∼=
(

‘Partial’ Π-section ςw : U−→X
)

In the second case, ςw defines homomorphism ς∗w : π1(U)−→π1(X). Then:
(

U{-hole in w can be admissibly filled
)

=⇒
(

ς∗w-image of any loop in U is nullhomotopic
)

⇐⇒
(

ς∗w is trivial
)

.

π1(X) = ‘tile homotopy group’ [J.H.Conway & J.C.Lagarias, 1990; W.Thurston, 1990]
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Higher homotopy/homology groups for Wang tiles

Let W be a (finite) set of D-dimensional notched hypercubic Wang

tiles (to tile RD). Build a D-dimensional cell complex X analogous to

before. Get projection Π : X−→RD such that Π(X0) = ZD.
(

Admissible W-tiling w of RD
)

∼=
(

Continuous Π-section ςw : RD−→X
)

.

(

‘Partial’ W-tiling w of U ⊂ RD
)

∼=
(

‘Partial’ Π-section ςw : U−→X
)

.

In this case, for all k ∈ N, the section ςw defines homomorphisms:

πkςw : πk(U, u) −→ πk(X, x); (x, u = suitable basepoints)

Hkςw : Hk(U,G) −→ Hk(X,G); ((G,+) = some coefficient group, e.g. G = Z)

Hkςw : Hk(U,G) −→ Hk(X,G)
(

Hole in w is fillable
)

=⇒
(

πkςw, Hkςw and Hkςw are trivial, ∀ k ∈ N
)

.

Homotopy/homology groups for subshifts of finite type

Let A be a finite alphabet. Let A ⊂ AZD be a subshift of finite type

of radius r > 0. Fix R ≥ r. TreatW := A(R) as Wang tiles with obvious

edge-matching conditions. Get tile complex XR. Then:
(

a ∈ A
)

∼=
(

W-admissible tiling of RD
)

∼=
(

Π-section ςa : RD−→XR

)

.

Idea: Use homotopy/(co)homology groups of XR as invariant for A (and

get algebraic invariants for codimension-(k + 1) defects in ˜A).

Problems:

[i] There ∃ many different Wang representations for A. None is ‘canon-

ical’. Different Wang representations may yield non-isomorphic groups.

[ii] Wang representations (and hence, their homotopy/homology groups)

do not behave well under subshift homomorphisms (i.e. CA).
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The Geller-Propp Projective Fundamental Group

Solution: There are natural surjections Xr ← Xr+1 ← Xr+2 ← · · ·

Get homomorphisms πk(Xr, xr)← πk(Xr+1, xr+1)← πk(Xr+2, xr+2)← · · ·

(Here, {xk} are basepoints determined by some fixed a ∈ A.)

Define kth projective homotopy group πk(A, a):= inverse limit

of this sequence. (If k = 1 this is the projective fundamental group of

W.Geller & J.Propp, 1995).

Likewise, we define kth projective (co)homology groups

Hk(A,G) := lim
←−

(Hk(Xr,G)← Hk(Xr+1,G)← Hk(Xr+2,G)← · · ·)

Hk(A,G) := lim
−→

(

Hk(Xr,G)→ Hk(Xr+1,G)→ Hk(Xr+2,G)→ · · ·
)

• Isomorphism invariants of A. • Detects codimension (k+1) defects.

Basepoint Freedom

The definition of πk(A) depends upon a chosen ‘basepoint’ a ∈ A.

We say A is basepoint free in dimension k if, for any a, a′ ∈ A, there

is a canonical isomorphism πk(A, a) ∼= πk(A, a
′).

Proposition:

(a) Suppose Π0
r : X0

r−→ZD is injective for all large enough r ∈ N.

Then A is basepoint-free in all dimensions.

Suppose (A, σ) is topologically weakly mixing [i.e. the Cartesian product

(A× A, σ × σ) is topologically transitive]. Then:

(b) If π1(A, a) is abelian, then A is basepoint free in dimension 1.

(c) If π1(A, a) is trivial, then A is basepoint free in all dimensions. 2
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Projective Groups and Cellular Automata

Proposition: Let Φ: AZD−→AZD be a CA with Φ(A) ⊆ A. Then Φ

induces group endomorphisms:

πdΦ : πd(A, a) −→ πd(A, a
′) ( ∼= πd(A, a) if basepoint free)

HdΦ : Hd(A,G) −→ Hd(A,G)

HdΦ : Hd(A,G) −→ Hd(A,G).

Proof: (Idea) If Φ has radius q, then Φ induces a cellular map Φ∗ : XR+q−→XR

for all R ≥ r, which yields corresponding homotopy/(co)homology homomor-
phisms. The resulting infinite commuting ladder of homomorphisms defines a
homomorphism of the inverse/direct limit groups. 2

Recall that πk[G∞(a)] := inverse limit of πk[Gr(a)] as r→∞.

Likewise defineHk[G∞(a)] (direct limit) andHk[G∞(a)] (inverse limit), ∀ k ∈ N.

If a ∈ ˜A, then a defines ‘partial’ Π-section ςa : GR(a)−→XR for all

R ≥ r. This induces group homomorphisms:

Hka : Hk[GR(a),G] −→ Hk(XR,G);

Hka : Hk(XR,G) −→ Hk[GR(a),G];

πka : πk[GR(a)] −→ πk(XR).

The resulting infinite commuting ladders of homomorphisms define homo-

morphisms of the inverse/direct limit groups. Thus, we have:

Theorem: (a) Any a ∈ ˜A induces group homomorphisms:

Hka : Hk[G∞(a),G]−→Hk(A,G) and Hka : Hk(A,G)−→Hk[G∞(a),G].

(b) If A is basepoint-free in dimension k, then a also induces a group

homomorphism πka : πk[G∞(a)]−→πk(A).

We call πka (resp. Hka orHka) the kth homotopy (resp. (co)homology)

signature of a; if it is nontrivial, we say a has a homotopy (resp.

(co)homology) defect of codimension (k + 1).
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Persistence of Homotopy/(co)homology Defects

Theorem: Let A ⊂ AZD be SFT. Let Φ: AZD → AZD be CA with

Φ(A) ⊆ A.

(a) Suppose A is basepoint-free in dimension k. If πkΦ : πk(A)−→πk(A)

is injective, then every homotopy defect of codimension (k + 1) is

Φ-persistent.

(b) If HkΦ : Hk(A,G)−→Hk(A,G) is injective, then every homology

defect of codimension (k + 1) is Φ-persistent.

(c) If HkΦ : Hk(A,G)−→Hk(A,G) is surjective, then every cohomology

defect of codimension (k + 1) is Φ-persistent. 2

This follows from:

Theorem: Let Φ: AZD−→AZD be a CA with Φ(A) ⊆ A. Let a ∈ ˜A
and let Φ(a) = b. Then we have commuting diagrams:

Hk[G∞(a),G]
Hkι−−−→ Hk[G∞(b),G]

Hka




y





yHkb

Hk(A,G)
HkΦ−−→ Hk(A,G)

Hk[G∞(a),G]
Hkι←−−− Hk[G∞(b),G]

Hka
x





x



Hkb

Hk(A,G)
HkΦ←−− Hk(A,G)

If A is basepoint-free, we also get a commuting diagram:

πk[G∞(a), ω]
πkι−−−→ πk[G∞(b), ω]

πka





y





y πkb

πk(A)
πkΦ−−→ πk(A)

Proof: (Idea) Stick together all the aforementioned infinite commuting ladders to
get infinite commuting ‘girder’, which yields commuting square of inverse limit
homomorphisms. 2
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