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A differentially heated rotating planet
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Model of fluid in a spherical shell
-

Navier-Stokes equations in the Boussinesq
approximation

Spherical polar coordinates and rotating frame of
reference

No-slip boundary conditions at inner sphere
Stress-free boundary condition at outer sphere
Insulating outer sphere

Differential heating imposed on inner sphere:
atr =rg, T =Ty — AT cos(20).
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Analysis

o .

# Look for steady flows invariant under rotation and
reflection about equator

» Reduces to problem in two-spatial dimensions

s Introduces additional boundary conditions at pole
and equator

# Bifurcations of steady solutions

o -
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Numerical computations

-

# Steady solutions
s Uuse pseudo-arclength continuation

# Linear stability: eigenvalues
s Implicitly restarted Arnoldi method
s with Cayley transformations
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Numerical computations

f # Need to solve systems of 3 steady PDEs in 2 spatial T
dimensions

o Discretize onan N x N grid

# 2nd order centred finite differences
» leads to large and sparse matrices
s non-symmetric matrices
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Steady solution: continuation

o .

# Look for steady solutions

s discretization reduces PDE to system of nonlinear
algebraic equations

s needtosolve G(z,a) =0,z € R",a € R

#® Use Newton’s method with continuation
» need to have a good guess
s assume we know z( at ag such that G(zg, ag) =0

o -
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Pseudo-arclength continuation

o .

# Consider the parameter o as an unknown
# predictor: follow tangent ¢; to get new guess -
# for correction, add an extra condition to get new system:

o -
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Pseudo-arclength continuation

o .




Eigenvalue approximation

-

# Eigenvalue problem
s Linearize about steady solution
» Qget generalized eigenvalue problems

AMO = Lo

» discretization leads to matrix eigenvalue problems

o -
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Eigenvalue approximation

o -

# For eigenvalues use ‘Implicitly restarted Arnoldi method
s Iterative
s memory efficient
s finds extremal eigenvalues

o -
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Eigenvalue approximation

-

# Use generalized Cayley transform
C(A,B) = (A — oyB) ' (A — ayB)

s ) are eigenvalues from A\Bz = Ax
s L are eigenvalues from uz’ = Ca'

s Real(\) > A _; 2

> || > 1

o -
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Steady Solution: ‘Hadley Cell’

azimuthal fluid velocity

=

temperature deviation




Steady Solution: n = R/ry = 1/2, AT = 0.004
- o

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/rqg = 1/2, AT = 0.026
- .

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: n = R/ry = 1/2, AT = 0.0483
- o

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/ry =1, AT = 0.002
- o

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: n = R/ry = 1, AT = 0.029
- o

stream function azimuthal fluid velocity temperature deviation
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Bifurcation Diagram: n = R/ry =1

-
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Steady Solution: » = R/ry = 3.5, AT = 0.001
- .

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/ry = 3.5, AT = 0.019
- .

stream function azimuthal fluid velocity temperature deviation




Bifurcation Diagram: n» = R/ry = 3.5

o .
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Cusp bifurcation
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Cusp bifurcation (schematic)

o .

M

3 solutions
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Computation of cusp point

o .

# Codimension two bifurcation
s Need two parameters: AT and n

o Write equations as:
U= LU+ N(U,U)

where U is dependent variable,
LU is linear part, N(U, U) is nonlinear part,

and U is derivative with respect to time

o -
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Computation of cusp point

o .

# Cusp point is characterized by:
1. LUy+ N(Upy,Upy) =0

2. zero eigenvalue of Ly where
LoV =LV + N(V,Uy) + N(Uy, V)

3. vanishing of the coefficient of 2nd-order term of
equation on centre manifold (or reduced equation)

o -
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Reduced equation

o .

# Reduced equation

W = B + Bow + aw? + cw?

where
a=1/2(®* N(®,P)) =0

® Is the eigenfunction corresponding to A = 0,

¢* is the corresponding adjoint eigenfunction,
(-,-) I1s the inner product

o -

Dynamics Day — p.32/3



-

.

Defining system

LUy+ N(Up,Up) =0, g¢g=0, ¢ =0
where ¢ and ¢’ are scalars given by

LoV 4+ gB =0, <C,V>:1

LoV +¢'B=—-N((V,V), (C,V')=0

where B not in range of Ly,
and C not in range of the adjoint operator Lj.

® Solvetogeta=0atn =346, AT =0.011

-
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Computation of cusp point

o .

# Cusp point is characterized by:
1. LUy+ N(Upy,Upy) =0

2. zero eigenvalue of Ly where
LoV =LV + N(V,Uy) + N(Uy, V)

3. vanishing of the coefficient of 2nd-order term of
equation on centre manifold (or reduced equation)

o -
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Summary
f # Looked for steady solutions with symmetry T
# Flow transition without eigenvalue crossing imaginary
axis
o Cusp point
o Future Work

Cusp for 2 to 3 cell transition
Symmetry breaking bifurcations (waves)
Hopf bifurcations

Other higher codimension bifurcations
s steady-Hopf bifurcations

o -
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