Lattice Dynamical Systems

Martin Golubitsky
 Houston

Ian Stewart Warwick

Fernando Antoneli Ana Dias
Yunjiao Wang
Matthew Nicol
Marcus Pivato
Andrew Török

Sao Paulo
Porto
Houston
Houston
Trent
Houston

Two Identical Cells

- $\sigma\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$ is a symmetry

Two Identical Cells

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right)
\end{aligned}
$$

- $\sigma\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$ is a symmetry
- $\operatorname{Fix}(\sigma)=\left\{x_{1}=x_{2}\right\} \quad$ is flow invariant

Synchrony is robust

Symmetry Overview

- A symmetry of a DiffEq $\dot{x}=f(x)$ is a linear map γ where

$$
\gamma(\text { sol'n })=\text { sol'n } \Longleftrightarrow f(\gamma x)=\gamma f(x)
$$

Symmetry Overview

- A symmetry of a DiffEq $\dot{x}=f(x)$ is a linear map γ where

$$
\gamma(\text { sol'n })=\text { sol'n } \quad \Longleftrightarrow \quad f(\gamma x)=\gamma f(x)
$$

- $\operatorname{Fix}(\Sigma)=\left\{x \in \mathbf{R}^{n}: \sigma x=x \quad \forall \sigma \in \Sigma\right\}$ is flow invariant Proof: $\quad f(x)=f(\sigma x)=\sigma f(x)$

Symmetry Overview

- A symmetry of a DiffEq $\dot{x}=f(x)$ is a linear map γ where

$$
\gamma(\text { sol'n })=\text { sol'n } \quad \Longleftrightarrow \quad f(\gamma x)=\gamma f(x)
$$

- $\operatorname{Fix}(\Sigma)=\left\{x \in \mathbf{R}^{n}: \sigma x=x \quad \forall \sigma \in \Sigma\right\}$ is flow invariant Proof: $\quad f(x)=f(\sigma x)=\sigma f(x)$
- Network symmetries are permutation symmetries Synchrony is robust in symmetric coupled systems

Symmetry Overview

- A symmetry of a DiffEq $\dot{x}=f(x)$ is a linear map γ where

$$
\gamma(\text { sol'n })=\text { sol'n } \quad \Longleftrightarrow \quad f(\gamma x)=\gamma f(x)
$$

- $\operatorname{Fix}(\Sigma)=\left\{x \in \mathbf{R}^{n}: \sigma x=x \quad \forall \sigma \in \Sigma\right\}$ is flow invariant Proof: $\quad f(x)=f(\sigma x)=\sigma f(x)$
- Network symmetries are permutation symmetries Synchrony is robust in symmetric coupled systems
- Symmetry group Γ is a modeling assumption Network architecture is also a modeling assumption

Synchrony Subspaces

- A polydiagonal is a subspace

$$
\left\{x: x_{c}=x_{d} \quad \text { for some subset of cells }\right\}
$$

Synchrony Subspaces

- A polydiagonal is a subspace

$$
\left\{x: x_{c}=x_{d} \quad \text { for some subset of cells }\right\}
$$

- $\Sigma \subset \Gamma=$ permutation group of network symmetries
$\operatorname{Fix}(\Sigma)$ is a polydiagonal and is flow-invariant

Synchrony Subspaces

- A polydiagonal is a subspace

$$
\left\{x: x_{c}=x_{d} \quad \text { for some subset of cells }\right\}
$$

- $\Sigma \subset \Gamma=$ permutation group of network symmetries
$\operatorname{Fix}(\Sigma)$ is a polydiagonal and is flow-invariant
- A synchrony subspace is a flow-invariant polydiagonal

Synchrony subspaces are coupled cell analogs of fixed-point subspaces

Synchrony Subspaces (2)

- Let Δ be a polydiagonal

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Synchrony Subspaces (2)

- Let Δ be a polydiagonal
- Color cells the same color if cell coord's in Δ are equal

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Synchrony Subspaces (2)

- Let Δ be a polydiagonal
- Color cells the same color if cell coord's in Δ are equal
- Consider special case: one coupling type.

Coloring is balanced if every pair of cells with same color receives equal numbers of inputs from cells of a given color

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Synchrony Subspaces (2)

- Let Δ be a polydiagonal
- Color cells the same color if cell coord's in Δ are equal
- Consider special case: one coupling type.

Coloring is balanced if every pair of cells with same color receives equal numbers of inputs from cells of a given color

- Theorem: synchrony subspace \Longleftrightarrow balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Stable Equilibria Exist

Given balanced k-coloring with polydiagonal Δ. Let $X_{0} \in \Delta$ be a generic point. Then X_{0} is an asymptotically stable equilibrium for some admissible system

- Can assume balanced coloring is associated to homogeneous network with one-dimensional dynamics
- $X_{0} \in \Delta$ has at most k distinct components $x_{0}^{1}, \ldots, x_{0}^{k}$. There exists polynomial $g: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
g\left(x_{0}^{i}\right)=0 \quad \text { and } \quad g^{\prime}\left(x_{0}^{i}\right)=-1
$$

- System $\dot{x_{i}}=g\left(x_{i}\right)$ has equilibrium X_{0} with Jacobian -I
- So X_{0} is an asymptotically stable equilibrium.
G., Nicol, and Wang

1D-Lattice Dynamical Systems

- Assume nearest neighbor coupling

$$
\begin{gathered}
\cdots\left({ }^{\mathrm{i}-2} \rightarrow-\cdots\right. \\
\dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \quad \text { where } \quad f(x, y, z)=f(x, z, y)
\end{gathered}
$$

Antoneli, Dias, G. and Wang (2006)

1D-Lattice Dynamical Systems

- Assume nearest neighbor coupling

$$
\begin{aligned}
& \longrightarrow \mathrm{i}-2 \rightarrow \mathrm{i}-1 \rightarrow \mathrm{i} \rightarrow \mathrm{i}+2 \rightarrow \\
& \dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \quad \text { where } \quad f(x, y, z)=f(x, z, y)
\end{aligned}
$$

- There are four balanced k colorings (when $k \geq 3$)

... ABC ABC ...
... ABCB ABCB ...
\ldots... ABCBA ABCBA ABCCBA ABCCBA ...

Antoneli, Dias, G. and Wang (2006)

1D-Lattice Dynamical Systems

- Assume nearest neighbor coupling

$$
\begin{gathered}
\cdots\left({ }^{\mathrm{i}-2} \rightarrow-\cdots\right. \\
\dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \quad \text { where } \quad f(x, y, z)=f(x, z, y)
\end{gathered}
$$

- There are four balanced k colorings (when $k \geq 3$)

... ABC ABC ...
... ABCB ABCB ...
\ldots... ABCBA ABCBA ABCCBA ABCCBA ...

- Every synchrony subspace is a fixed-point subspace

Antoneli, Dias, G. and Wang (2006)

1D-Lattice Dynamical Systems

- Assume nearest neighbor coupling

$$
\begin{gathered}
\cdots(\mathrm{i}-2 \rightarrow+ \\
\dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \quad \text { where } \quad f(x, y, z)=f(x, z, y)
\end{gathered}
$$

- There are four balanced k colorings (when $k \geq 3$)

\cdots ABC $\operatorname{ABC} \cdots$	\cdots ABCB ABCB \cdots
\cdots ABCBA ABCBA \cdots	\cdots ABCCBA ABCCBA \cdots

- Every synchrony subspace is a fixed-point subspace
- Every balanced coloring is periodic

Antoneli, Dias, G. and Wang (2006)

2D-Lattice Dynamical Systems

- Consider square lattice with nearest neighbor coupling
- Form a two-color balanced relation

- Each black cell connected to two black and two white Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)

Lattice Dynamical Systems (2)

- On Black/White diagonal interchange black and white

Result is balanced

Lattice Dynamical Systems (2)

- On Black/White diagonal interchange black and white

Result is balanced

- Continuum of different synchrony subspaces

Lattice Dynamical Systems (3)

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

$4 B \rightarrow W ; 4 W \rightarrow B$

$2 B \rightarrow W ; 3 W \rightarrow B$

$2 B \rightarrow W ; 4 W \rightarrow B$

$1 B \rightarrow W ; 4 W \rightarrow B$
$2 B \rightarrow W ; 1 W \rightarrow B$

$3 B \rightarrow W ; 3 W \rightarrow B$

$1 B \rightarrow W ; 1 W \rightarrow B$

Wang and G. (2005)
\square indicates nonsymmetric solution

Symmetries

$$
\begin{array}{ll}
\text { - }(i, j) \mapsto(i, j+4) & (i, j) \mapsto(i+3, j+2) \\
\text { - }(i, j) \mapsto(-i, j) & (i, j) \mapsto(i,-j)
\end{array}
$$

Lattice Dynamical Systems (4)

- There are two infinite families of balanced two-colorings

- Up to symmetry these are all balanced two-colorings

Infinite Families

- There are many infinite families of balanced k-colorings

	B		D				C		A
A		C	A	A		D		B	
	D		B	C			A		D
C		A	D			B		C	
	B		C		A		D		B
A		D	B	B		C		A	
	C		A)		B		C
D		B		C		A		D	
	A		D		B		C		A
B		C		A		D		B	

- We do not know how to classify balanced k-colorings

Lattice Dynamical Systems (5)

- Architecture is really important

Antoneli, Dias, G., and Wang (2005)

Lattice Dynamical Systems (5)

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
- No infinite families

Antoneli, Dias, G., and Wang (2005)

Lattice Dynamical Systems (5)

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
- No infinite families
- For each k a finite number of balanced k colorings

Antoneli, Dias, G., and Wang (2005)

Lattice Dynamical Systems (5)

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
- No infinite families
- For each k a finite number of balanced k colorings
- All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2005)

Windows 1

$$
W_{0}=\{0\} \quad \text { and } \quad W_{i+1}=I\left(W_{i}\right)
$$

NEAREST NEIGHBOR
NEXT NEAREST NEIGHBOR

- Input set of $U=I(U)=\{c \in \mathcal{C}: c$ connects to cell in $U\}$
- Input set contains lattice generators: $\mathcal{L}=W_{0} \cup W_{1} \cup \cdots$
- W_{k-1} contains all k colors of a balanced k-coloring

Windows 2

- $\operatorname{bd}(U)=I(U) \backslash U$
$c \in \operatorname{bd}(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced

Windows 2

- $\operatorname{bd}(U)=I(U) \backslash U$
$c \in \operatorname{bd}(U)$ is 1 -determined if color of c is determined by colors of cells in U and fact that coloring is balanced
- Define p-determined inductively

Windows 2

- $\operatorname{bd}(U)=I(U) \backslash U$
$c \in \operatorname{bd}(U)$ is 1 -determined if color of c is determined by colors of cells in U and fact that coloring is balanced
- Define p-determined inductively
- Boundary cells with NN coupling are not 1-determined

Boundary cells with NNN coupling are 2-determined

Windows 3

Square lattice

Nearest and next nearest neighbor coupling
\times indicates
1-determined cells of W_{2}

\bigcirc	0	0	0	\bigcirc	0	0	0	O
\bigcirc	\bigcirc	O	\otimes	\nsim	$\not \pm$	0	0	0
\bigcirc	O	-	-	\bigcirc	\bullet	\bullet	O	\bigcirc
\bigcirc	Q	\bullet	\bullet	\bullet	\bullet	\bullet	\otimes	\bigcirc
\bigcirc	\ngtr	\bullet	\bullet	-	\bullet	\bullet	\otimes	\bigcirc
\bigcirc	\#	\bullet	-	-	-	\bullet	\otimes	O
\bigcirc	O	\bullet	-	\bullet	\bullet	\bullet	\bigcirc	\bigcirc
\bigcirc	O	O	\otimes	\otimes	$\not \otimes$	O	O	O
O	O	\bigcirc	O	\bigcirc	O	O	0	O

Windows 3

Square lattice
Nearest and next nearest neighbor coupling
\times indicates
1-determined cells of W_{2}

0	0	O	0	0	0	0	0	0
0	\bigcirc	0	$\not \square$	\otimes	\ngtr	0	0	0
0	0	-	\bullet	\bullet	\bullet	\bullet	O	0

- Three cells in corners of square are 2-determined

Windows 3

Square lattice

Nearest and next nearest neighbor coupling
\times indicates
1-determined cells of W_{2}

0	0	0	0	\bigcirc	0	0	0	0
0	0	0	\otimes	\otimes	$\not \subset$	O	0	0
0	\bigcirc	\bullet	-	-	-	\bullet	\bigcirc	0

O	\otimes	\bullet	\bullet	\bullet	\bullet	\bullet	\otimes	0
O	\otimes	\bullet	\bullet	\bullet	\bullet	\bullet	\otimes	0
0	\otimes	\bullet	\bullet	\bullet	\bullet	\bullet	\otimes	0
0	0	\bullet	\bullet	\bullet	\bullet	\bullet	0	0
0	0	0	\varnothing	\otimes	\otimes	0	0	0
0	0	0	0	0	0	0	0	0

- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in \operatorname{bd}(U)$ are p-determined for some p

Windows 3

Square lattice

Nearest and next nearest neighbor coupling
\times indicates
1-determined cells of W_{2}

0	O	0	\bigcirc	0	0	0	0	\bigcirc
\bigcirc	O	0	\otimes	\otimes	\otimes	O	0	\bigcirc
0	O	-	-	-	-	-	0	\bigcirc
0	\otimes	\bullet	-	\bullet	\bullet	\bullet	\pm	\bigcirc
\bigcirc	\otimes	-	-	\bullet	\bullet	\bullet	\pm	\bigcirc
0	\pm	-	\bullet	-	-	\bullet	\pm	\bigcirc
0	O	-	-	\bullet	-	\bullet	0	\bigcirc
0	O	0	\otimes	$\not \square$	$\not \otimes$	0	0	O
0	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	O

- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in \operatorname{bd}(U)$ are p-determined for some p
- W_{i} determines its boundary for all $i \geq 2$

Windows 4

Square lattice with Nearest neighbor coupling

W_{2} is not 1-determined

Windows 5

- $W_{i_{0}}$ is a window if W_{i} determines its boundary $\forall i \geqslant i_{0}$
- Suppose a balanced k-coloring restricted to $\operatorname{int}\left(W_{i}\right)$ for some $i \geqslant i_{0}$ contains all k colors. Then
- k-coloring is uniquely determined on whole lattice by its restriction to W_{i}
- Thm: Suppose lattice network has window. Fix k. Then
- Finite number of balanced k-colorings on \mathcal{L}
- Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)

