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Two Identical Cells

1 2 ẋ1 = f(x1, x2)

ẋ2 = f(x2, x1)

σ(x1, x2) = (x2, x1) is a symmetry

Fix(σ) = {x1 = x2} is flow invariant
Synchrony is robust
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Symmetry Overview
A symmetry of a DiffEq ẋ = f(x) is a linear map γ where

γ(sol’n) = sol’n ⇐⇒ f(γx) = γf(x)

Fix(Σ) = {x ∈ R
n : σx = x ∀σ ∈ Σ} is flow invariant

Proof: f(x) = f(σx) = σf(x)

Network symmetries are permutation symmetries
Synchrony is robust in symmetric coupled systems

Symmetry group Γ is a modeling assumption
Network architecture is also a modeling assumption
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Synchrony Subspaces
A polydiagonal is a subspace

{x : xc = xd for some subset of cells}

Σ ⊂ Γ = permutation group of network symmetries
Fix(Σ) is a polydiagonal and is flow-invariant

A synchrony subspace is a flow-invariant polydiagonal

Synchrony subspaces are
coupled cell analogs of fixed-point subspaces
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Synchrony Subspaces (2)
Let ∆ be a polydiagonal

Color cells the same color if cell coord’s in ∆ are equal

Consider special case: one coupling type.
Coloring is balanced if every pair of cells with same color
receives equal numbers of inputs from cells of a given
color

Theorem: synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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Stable Equilibria Exist
Given balanced k-coloring with polydiagonal ∆. Let X0 ∈ ∆
be a generic point. Then X0 is an asymptotically stable
equilibrium for some admissible system

Can assume balanced coloring is associated to
homogeneous network with one-dimensional dynamics
X0 ∈ ∆ has at most k distinct components x1

0, . . . , x
k
0.

There exists polynomial g : R → R such that

g(xi
0) = 0 and g′(xi

0) = −1

System ẋi = g(xi) has equilibrium X0 with Jacobian −I

So X0 is an asymptotically stable equilibrium.

G., Nicol, and Wang
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1D-Lattice Dynamical Systems
Assume nearest neighbor coupling

i i+1 i+2i−1i−2

ẋi = f(xi, xi−1, xi+1) where f(x, y, z) = f(x, z, y)

There are four balanced k colorings (when k ≥ 3)

· · ·ABC ABC · · · · · ·ABCB ABCB · · ·

· · ·ABCBA ABCBA · · · · · ·ABCCBA ABCCBA · · ·

Every synchrony subspace is a fixed-point subspace

Every balanced coloring is periodic

Antoneli, Dias, G. and Wang (2006)
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2D-Lattice Dynamical Systems
Consider square lattice with nearest neighbor coupling
Form a two-color balanced relation

Each black cell connected to two black and two white
Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)
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Lattice Dynamical Systems (2)
On Black/White diagonal interchange black and white

Result is balanced

Continuum of different synchrony subspaces
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Lattice Dynamical Systems (3)
There are eight isolated balanced two-colorings on
square lattice with nearest neighbor coupling

4B →W ; 4W → B 2B →W ; 4W → B 1B →W ; 4W → B 3B →W ; 3W → B

2B →W ; 3W → B 2B →W ; 1W → B 2B →W ; 1W → B 1B →W ; 1W → B

Wang and G. (2005) indicates nonsymmetric solution
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Symmetries
(i, j) 7→ (i, j + 4) (i, j) 7→ (i + 3, j + 2)

(i, j) 7→ (−i, j) (i, j) 7→ (i,−j)
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Lattice Dynamical Systems (4)
There are two infinite families of balanced two-colorings

2B →W ; 2W → B 1B →W ; 3W → B

Up to symmetry these are all balanced two-colorings
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Infinite Families
There are many infinite families of balanced k-colorings
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We do not know how to classify balanced k-colorings
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Lattice Dynamical Systems (5)
Architecture is really important

For square (and hexagonal) lattices with
nearest and next nearest neighbor coupling

No infinite families

For each k a finite number of balanced k colorings

All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2005)
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Windows 1
W0 = {0} and Wi+1 = I(Wi)
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Input set of U = I(U) = {c ∈ C : c connects to cell in U}

Input set contains lattice generators: L = W0 ∪ W1 ∪ · · ·

Wk−1 contains all k colors of a balanced k-coloring
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Windows 2
bd(U) = I(U) r U

c ∈ bd(U) is 1-determined if color of c is determined by
colors of cells in U and fact that coloring is balanced

Define p-determined inductively

Boundary cells with NN coupling are not 1-determined

Boundary cells with NNN coupling are 2-determined
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Windows 3

Square lattice

Nearest and next nearest
neighbor coupling

× indicates
1-determined cells of W2
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• Three cells in corners of square are 2-determined
• U determines its boundary if all c ∈ bd(U) are

p-determined for some p

• Wi determines its boundary for all i ≥ 2
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Windows 4
Square lattice with Nearest neighbor coupling

W2 is not 1-determined
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Windows 5
Wi0 is a window if Wi determines its boundary ∀ i > i0

Suppose a balanced k-coloring restricted to int(Wi) for
some i > i0 contains all k colors. Then

k-coloring is uniquely determined on whole lattice by
its restriction to Wi

Thm: Suppose lattice network has window. Fix k. Then

Finite number of balanced k-colorings on L

Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)
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