Martin Golubitsky Houston
Ian Stewart Warwick

Fernando Antoneli

Ana Dias

Yunjiao Wang

Matthew Nicol

Marcus Pivato

Andrew Török

Sao Paulo

Porto

Houston

Houston

Trent

Houston

Two Identical Cells

$$\dot{x}_1 = f(x_1, x_2)
\dot{x}_2 = f(x_2, x_1)$$

 \bullet $\sigma(x_1,x_2)=(x_2,x_1)$ is a symmetry

Two Identical Cells

$$\dot{x}_1 = f(x_1, x_2)
\dot{x}_2 = f(x_2, x_1)$$

- $\sigma(x_1, x_2) = (x_2, x_1)$ is a symmetry
- Fix $(\sigma) = \{x_1 = x_2\}$ is flow invariant Synchrony is robust

• A symmetry of a DiffEq $\dot{x} = f(x)$ is a linear map γ where

$$\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$$

• A symmetry of a DiffEq $\dot{x} = f(x)$ is a linear map γ where $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$

• Fix(
$$\Sigma$$
) = { $x \in \mathbf{R}^n : \sigma x = x \quad \forall \sigma \in \Sigma$ } is flow invariant
Proof: $f(x) = f(\sigma x) = \sigma f(x)$

• A symmetry of a DiffEq $\dot{x} = f(x)$ is a linear map γ where $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$

- Fix $(\Sigma) = \{x \in \mathbf{R}^n : \sigma x = x \quad \forall \sigma \in \Sigma \}$ is flow invariant Proof: $f(x) = f(\sigma x) = \sigma f(x)$
- Network symmetries are permutation symmetries
 Synchrony is robust in symmetric coupled systems

• A symmetry of a DiffEq $\dot{x} = f(x)$ is a linear map γ where $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$

- Fix $(\Sigma) = \{x \in \mathbf{R}^n : \sigma x = x \quad \forall \sigma \in \Sigma \}$ is flow invariant Proof: $f(x) = f(\sigma x) = \sigma f(x)$
- Network symmetries are permutation symmetries
 Synchrony is robust in symmetric coupled systems
- Symmetry group Γ is a modeling assumption Network architecture is also a modeling assumption

A polydiagonal is a subspace

 $\{x: x_c = x_d \text{ for some subset of cells}\}$

A polydiagonal is a subspace

 $\{x: x_c = x_d \text{ for some subset of cells}\}$

• $\Sigma \subset \Gamma =$ permutation group of network symmetries $Fix(\Sigma)$ is a polydiagonal and is flow-invariant

A polydiagonal is a subspace

 $\{x: x_c = x_d \text{ for some subset of cells}\}$

- $\Sigma \subset \Gamma =$ permutation group of network symmetries $Fix(\Sigma)$ is a polydiagonal and is flow-invariant
- A synchrony subspace is a flow-invariant polydiagonal

Synchrony subspaces are coupled cell analogs of fixed-point subspaces

ullet Let Δ be a polydiagonal

ullet Let Δ be a polydiagonal

• Color cells the same color if cell coord's in \triangle are equal

- ullet Let Δ be a polydiagonal
- Color cells the same color if cell coord's in \triangle are equal
- Consider special case: one coupling type.

Coloring is balanced if every pair of cells with same color receives equal numbers of inputs from cells of a given color

- ullet Let Δ be a polydiagonal
- Color cells the same color if cell coord's in \triangle are equal
- Consider special case: one coupling type.
 - Coloring is balanced if every pair of cells with same color receives equal numbers of inputs from cells of a given color
- Theorem: synchrony subspace ⇒ balanced

Stable Equilibria Exist

Given balanced k-coloring with polydiagonal Δ . Let $X_0 \in \Delta$ be a generic point. Then X_0 is an asymptotically stable equilibrium for some admissible system

- Can assume balanced coloring is associated to homogeneous network with one-dimensional dynamics
- $X_0 \in \Delta$ has at most k distinct components x_0^1, \ldots, x_0^k . There exists polynomial $g: \mathbf{R} \to \mathbf{R}$ such that

$$g(x_0^i) = 0$$
 and $g'(x_0^i) = -1$

- System $\dot{x_i} = g(x_i)$ has equilibrium X_0 with Jacobian -I
- So X_0 is an asymptotically stable equilibrium.

G., Nicol, and Wang

Assume nearest neighbor coupling

$$\dot{x}_i = f(x_i, x_{i-1}, x_{i+1})$$
 where $f(x, y, z) = f(x, z, y)$

Assume nearest neighbor coupling

$$\dot{x}_i = f(x_i, x_{i-1}, x_{i+1})$$
 where $f(x, y, z) = f(x, z, y)$

• There are four balanced k colorings (when $k \geq 3$)

$$\cdots$$
 ABC ABC \cdots \cdots ABCB ABCB \cdots \cdots ABCBA ABCBA \cdots

Assume nearest neighbor coupling

$$\dot{x}_i = f(x_i, x_{i-1}, x_{i+1})$$
 where $f(x, y, z) = f(x, z, y)$

• There are four balanced k colorings (when $k \ge 3$)

$$\cdots$$
 ABC ABC \cdots \cdots ABCB ABCB \cdots \cdots ABCBA ABCBA \cdots

Every synchrony subspace is a fixed-point subspace

Assume nearest neighbor coupling

$$\dot{x}_i = f(x_i, x_{i-1}, x_{i+1}) \quad \text{where} \quad f(x, y, z) = f(x, z, y)$$

• There are four balanced k colorings (when $k \geq 3$)

$$\cdots$$
 ABC ABC \cdots \cdots ABCB ABCB \cdots \cdots ABCBA ABCBA \cdots

- Every synchrony subspace is a fixed-point subspace
- Every balanced coloring is periodic

- Consider square lattice with nearest neighbor coupling
- Form a two-color balanced relation

Each black cell connected to two black and two white Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)

On Black/White diagonal interchange black and white

Result is balanced

On Black/White diagonal interchange black and white

Result is balanced

Continuum of different synchrony subspaces

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

$$4B \rightarrow W; 4W \rightarrow B$$

 $2B \rightarrow W; 4W \rightarrow B$

 $1B \rightarrow W; 4W \rightarrow B$

 $3B \rightarrow W; 3W \rightarrow B$

 $2B \rightarrow W; 3W \rightarrow B$

 $2B \rightarrow W; 1W \rightarrow B$

$$2B \rightarrow W; 1W \rightarrow B$$

 $1B \rightarrow W; 1W \rightarrow B$

Wang and G. (2005)

indicates nonsymmetric solution

Symmetries

•
$$(i,j) \mapsto (i,j+4)$$
 $(i,j) \mapsto (i+3,j+2)$

$$(i,j) \mapsto (-i,j) \qquad (i,j) \mapsto (i,-j)$$

There are two infinite families of balanced two-colorings

 $1B \rightarrow W; 3W \rightarrow B$

Up to symmetry these are all balanced two-colorings

Infinite Families

There are many infinite families of balanced k-colorings

ullet We do not know how to classify balanced k-colorings

Architecture is really important

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
 - No infinite families

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
 - No infinite families
 - For each k a finite number of balanced k colorings

- Architecture is really important
- For square (and hexagonal) lattices with nearest and next nearest neighbor coupling
 - No infinite families
 - For each k a finite number of balanced k colorings
 - All balanced colorings are doubly-periodic

$$W_0 = \{0\}$$
 and $W_{i+1} = I(W_i)$

NEAREST NEIGHBOR NEXT NEAREST NEIGHBOR

- Input set of $U = I(U) = \{c \in \mathcal{C} : c \text{ connects to cell in } U\}$
- Input set contains lattice generators: $\mathcal{L} = W_0 \cup W_1 \cup \cdots$
- W_{k-1} contains all k colors of a balanced k-coloring

• $\mathrm{bd}(U) = I(U) \smallsetminus U$ $c \in \mathrm{bd}(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced

- $\mathrm{bd}(U) = I(U) \smallsetminus U$ $c \in \mathrm{bd}(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced
- Define p-determined inductively

- $\mathrm{bd}(U) = I(U) \smallsetminus U$ $c \in \mathrm{bd}(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced
- Define p-determined inductively
- Boundary cells with NN coupling are not 1-determined
 Boundary cells with NNN coupling are 2-determined

Square lattice

Nearest and next nearest neighbor coupling

- × indicates
- 1-determined cells of W_2

- \circ \bowtie \bullet \bullet \bullet \bowtie \circ
- $\circ \bowtie \bullet \bullet \bullet \bowtie \circ$
- $\circ \bowtie \bullet \bullet \bullet \bowtie \circ$
- \circ \circ \bullet \bullet \bullet \circ \circ
- $\ \, \circ \ \, \circ \ \, \boxtimes \ \, \boxtimes \ \, \boxtimes \ \, \circ \ \, \circ \ \, \circ \ \,$
- 0 0 0 0 0 0 0 0

• Three cells in corners of square are 2-determined

- Square lattice
- Nearest and next nearest neighbor coupling
- × indicates
- 1-determined cells of W_2

0 0 0 0

- \circ \circ \bullet \bullet \bullet \circ \circ
- 0 0 0 0 0 0 0 0
- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in bd(U)$ are p-determined for some p

- Square lattice
- Nearest and next nearest neighbor coupling
- × indicates
- 1-determined cells of W_2

0 0 0 0 0

- 0 0 0 8 8 8 0 0 0
- 0 0 0 0 0 0 0 0
- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in bd(U)$ are p-determined for some p
- W_i determines its boundary for all $i \geq 2$

Square lattice with Nearest neighbor coupling

 W_2 is not 1-determined

- W_{i_0} is a window if W_i determines its boundary $\forall i \geqslant i_0$
- Suppose a balanced k-coloring restricted to $int(W_i)$ for some $i \ge i_0$ contains all k colors. Then
 - k-coloring is uniquely determined on whole lattice by its restriction to W_i
- Thm: Suppose lattice network has window. Fix k. Then
 - Finite number of balanced k-colorings on \mathcal{L}
 - Each balanced k-coloring is multiply-periodic