Chaotic Maps, Neglected Dynamics, and Frobenius-Perron Analysis

Matt Davison mdavison@uwo.ca

Department of Applied Mathematics The University of Western Ontario

Thanks

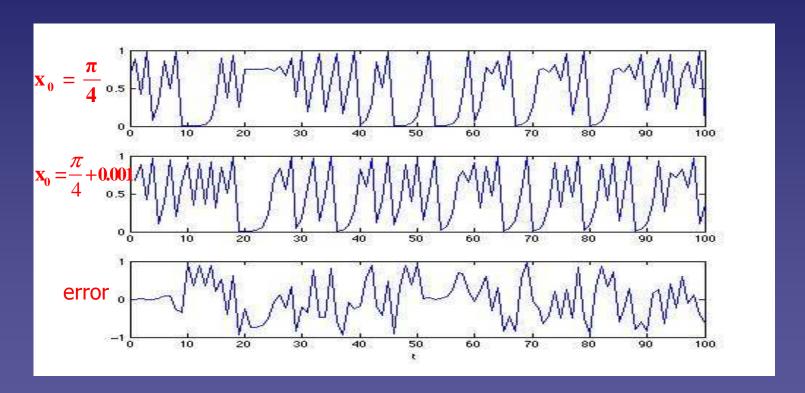
- Organizers and Audience
 For inviting/listening to an amateur
- Chris Essex, John ShinerIdeas
- NSERC, Swiss NSFFunding
- Sharon WangSlides

Outline

- The discrete logistic map with r = 4
 - $\varnothing X_{n+1} = 4X_n(1-X_n)$
 - Ø Pointwise unpredictable
 - Ø Very predictable on a population basis
 - Ø Frobenius-Perron Analysis
- Modelling issues
 Sensitive dependence on neglected dynamics?
- Weakly diffusively coupled binary shift maps
 Analytic Progress and Insights

Unpredictable Dynamics

• $X_{n+1} = 4X_n(1-X_n)$ time series



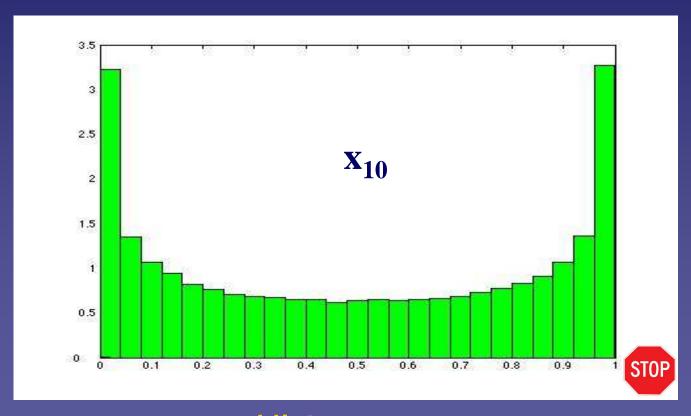
Sensitive to initial conditions

Look For Statistical Regularities

Start with 100,000 random points in [0, 1] Evo

Evolve by logistic Map

$$X_{n+1} = 4X_n(1 - X_n)$$



Histogram

Probability Mathematics

- What do we see?
 - Ø much more regular
 - Ø seems to approach "steady state"!
- Can we understand this mathematically?
- Reference:

Chaos, Fractals and Noise Lasota and Mackey

Some Notations

- $x_{n+1} = S(x_n)$ -- a dynamical system on set X
- $f_n(x)$ -- a family of probability densities on X, i.e., $\int_X f_n(y) dy = 1$ How do these densities evolve?
- A -- a subset of X
- Under some mild conditions about S to obtain

$$\int_{S^{-1}(A)} f_n(y) dy = \int_A f_{n+1}(y) dy$$

Density Function in R

Specialize to X∈ R to get

$$\int_0^x f_{n+1}(y)dy = \int_{S^{-1}[0.1]} f_n(y)dy$$

Differentiate both sides

$$f_{n+1}(x) = Pf_n(x) = \frac{d}{dx} \int_{S^{-1}[0,1]} f_n(y) dy$$

Frobenius-Perron operator (P)

Density Function of Logistic Map

• Further specialize to S(x)=4x(1-x)

$$y = 4x(1-x) \longrightarrow x = \frac{1}{2} \pm \frac{1}{2} \sqrt{1-y}$$

$$S^{-1}[(0,x)] = (0,\frac{1}{2} + \frac{1}{2} \sqrt{1-x}) \cup (0,\frac{1}{2} - \frac{1}{2} \sqrt{1-x})$$

• Frobenius-Perron equation:

$$Pf(x) = \frac{d}{dx} \left[\int_0^{\frac{1}{2} - \frac{1}{2}\sqrt{1 - x}} f(t)dt + \int_{\frac{1}{2} + \frac{1}{2}\sqrt{1 - x}}^0 f(t)dt \right]$$
$$= \frac{1}{4\sqrt{1 - x}} \left[f(\frac{1}{2} - \frac{1}{2}\sqrt{1 - x}) + f(\frac{1}{2} + \frac{1}{2}\sqrt{1 - x}) \right]$$

Density Function with $f_0(x)=1$

$$f_1(x) = \frac{1}{2\sqrt{1-x}},$$

$$f_2(x) = \frac{1}{4\sqrt{2}\sqrt{x(1-x)}} \left[\sqrt{1+\sqrt{1-x}} + \sqrt{1-\sqrt{1-x}} \right]$$

$$f_{3}(x) = \frac{1}{8\sqrt{2}\sqrt{x(1-x)}} \left[\sqrt{1+\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{1-x}}} + \sqrt{1+\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{1-x}}} + \sqrt{1-\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{1-x}}} + \sqrt{1-\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{1-x}}} \right]$$

$$\vdots$$

$$f_{n}(x) = \frac{g_{n}(x)}{\sqrt{x(1-x)}} \qquad g_{0} = \sqrt{x(1-x)}$$

$$g_{n+1}(x) = \frac{1}{2} \left[g_n(\frac{1}{2} + \frac{1}{2}\sqrt{1-x}) + g_n(\frac{1}{2} - \frac{1}{2}\sqrt{1-x}) \right]$$

Simpler Functional Evolution Map g

$$g_{1}(x) = \frac{\sqrt{x}}{2},$$

$$g_{2}(x) = \frac{1}{4\sqrt{2}} \left[\sqrt{1 + \sqrt{1 - x}} + \sqrt{1 - \sqrt{1 - x}} \right],$$

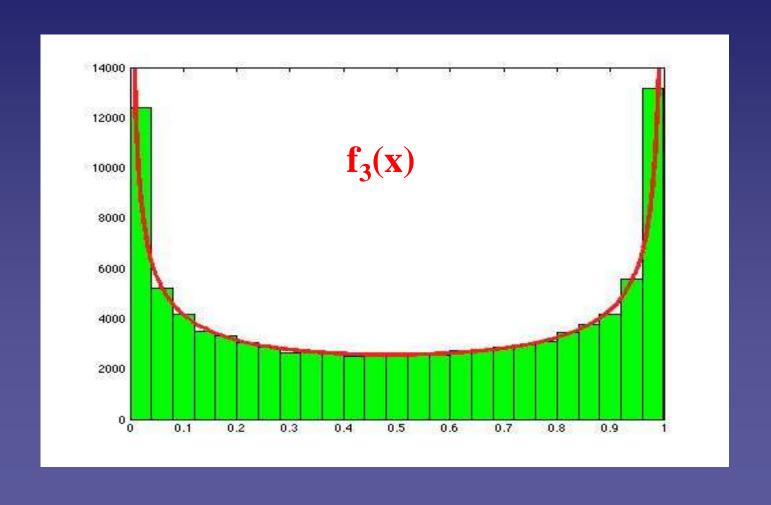
$$g_{3}(x) = \frac{1}{8\sqrt{2}} \left[\sqrt{1 + \sqrt{\frac{1}{2} + \frac{1}{2}}\sqrt{1 - x}} + \sqrt{1 + \sqrt{\frac{1}{2} - \frac{1}{2}}\sqrt{1 - x}} + \sqrt{1 - \sqrt{\frac{1}{2} + \frac{1}{2}}\sqrt{1 - x}} + \sqrt{1 - \sqrt{\frac{1}{2} - \frac{1}{2}}\sqrt{1 - x}} \right],$$

$$\vdots$$

$$\lim_{n \to \infty} g_{n}(x) = \frac{1}{\pi}$$

$$\lim_{n\to\infty} \sum_{a_1=-1}^{1} \sum_{a_2=-1}^{1} \cdots \sum_{a_n=-1}^{1} \sqrt{1+a_1\sqrt{\frac{1}{2}+\frac{a_2}{2}\sqrt{\frac{1}{2}+\cdots+\frac{a_n}{2}\sqrt{1-x}}}} = \frac{2^n\sqrt{2}}{\pi}.$$

Analytic Solution vs. Evolution



Natural Questions

- Properties of Perron-Frobenius operator P? $Pf_n(x) = f_{n+1}(x)$
- Does resulting map have a fixed point?

It does!
$$f^*(x) = \frac{1}{\pi \sqrt{x(1-x)}} \text{ [see Ulam '1948]}$$

- What is the continuous-time analogue?
 - -- Fokker Plank, Kolmogorov

Modelling Process

- Resemblance between model and reality?
 You have to ask the right questions here!
- Stochastic Stability?Chris Zeeman
- Sensitive dependence on neglected dynamics if you are asking for trajectories
- What if you are asking for underlying probability densities?

Sensitive Dependence on Neglected Dynamics

Test problem

$$x_{n+1} = (2x_n) \mod 1$$
 (Standard example for SDIC)

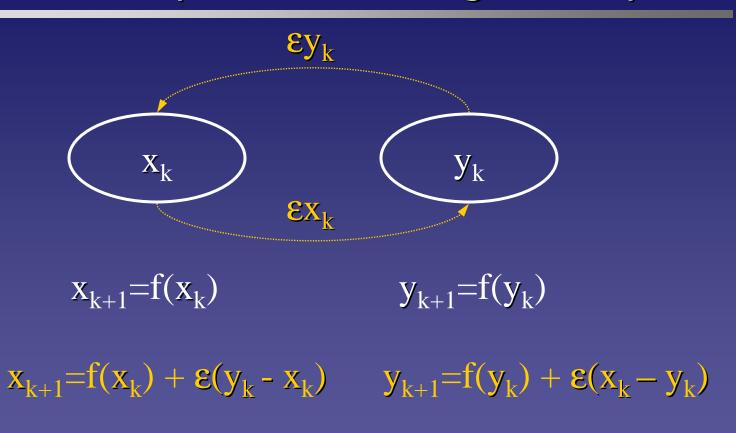
Frobenius-Perron equation:

$$f_{n+1}(x) = Pf_n(x) = \frac{1}{2} \left[f_n(\frac{x}{2}) + f_n(\frac{x+1}{2}) \right]$$

Very simple, with fixed point f*(x)=1.

Very bad map pointwise, very nice map probabilistically

Sensitive Dependence on Neglected dynamics



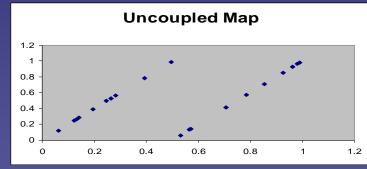
Diffusive coupling

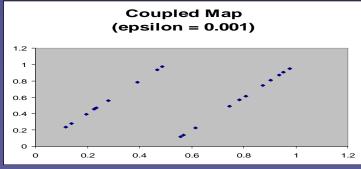
What if we throw some easily neglected dynamics into the mix?

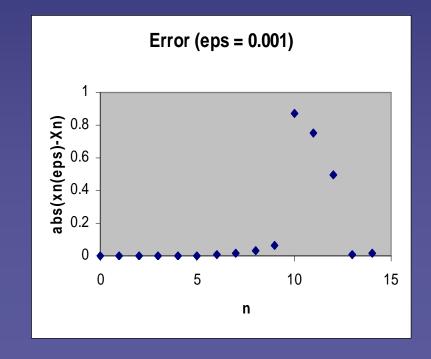
Diffusively coupled shift maps

$$x_{n+1} = [2x_n + \varepsilon(y_n - x_n)] \mod 1$$
$$y_{n+1} = [2y_n + \varepsilon(x_n - y_n)] \mod 1$$

$$[0, 1] \times [0, 1] \rightarrow [0, 1] \times [0, 1]$$







Coupling at Density Levels

• Diffusive coupled shift maps $S = S_1^{\circ} S_2 \quad [x, y] \rightarrow [u, v]$

$$S_1: [0, 1] \times [0, 1] \longrightarrow \left[0, \frac{2}{2 - \varepsilon}\right] \times \left[0, \frac{2}{2 - \varepsilon}\right], S_2: \left[0, \frac{2}{2 - \varepsilon}\right] \times \left[0, \frac{2}{2 - \varepsilon}\right] \longrightarrow [0, 1] \times [0, 1]$$

• Inverse maps $S^{-1} = S_1^{-1} \circ S_2^{-1} \quad [u, v] \to [x, y]$

$$S^{-1}((x,y)) = \left\{ \left[\frac{(2-\varepsilon)u}{4(1-\varepsilon)} - \frac{\varepsilon v}{4(1-\varepsilon)}, \frac{(2-\varepsilon)u}{4(1-\varepsilon)} - \frac{\varepsilon u}{4(1-\varepsilon)} \right] \right\}$$

Functional equation operating on the densities

$$f_{n+1}(x,y) = Pf_n(x,y) =$$

$$= \frac{1}{4(1-\varepsilon)} \left[f\left(\frac{x}{2} + \frac{\varepsilon(x-y)}{4(1-\varepsilon)}, \frac{y}{2} + \frac{\varepsilon(y-x)}{4(1-\varepsilon)}\right) + f\left(\frac{x+1}{2} + \frac{\varepsilon(x-y+1)}{4(1-\varepsilon)}, \frac{y}{2} + \frac{\varepsilon(y-x+1)}{4(1-\varepsilon)}\right) + f\left(\frac{x}{2} + \frac{\varepsilon(x-y+1)}{4(1-\varepsilon)}, \frac{y+1}{2} + \frac{\varepsilon(y-x+1)}{4(1-\varepsilon)}\right) + f\left(\frac{x+1}{2} + \frac{\varepsilon(x-y)}{4(1-\varepsilon)}, \frac{y+1}{2} + \frac{\varepsilon(y-x)}{4(1-\varepsilon)}\right) \right]$$

Does it Reduce Back? Check it out

• When $\varepsilon \rightarrow 0$,

$$f^*(x,y) = \frac{1}{4} \left[f^*(\frac{x}{2}, \frac{y}{2}) + f^*(\frac{x+1}{2}, \frac{y}{2}) + f^*(\frac{x}{2}, \frac{y+1}{2}) + f^*(\frac{x+1}{2}, \frac{y+1}{2}) \right]$$

• f(x, y) = X(x)Y(y) reduces the system to

$$X(x) = \frac{1}{2} \left[X(\frac{x}{2}) + X(\frac{x+1}{2}) \right], Y(y) = \frac{1}{2} \left[Y(\frac{y}{2}) + Y(\frac{y+1}{2}) \right]$$

The decoupling ansatz restores the original dynamics

Solve the Original Functional Equation

- By symmetry: f(x,y) = f(y, x)
- Diffusion 'turns off' when y=x suggests the ansatz f(x,y)=g(y-x)
- set z= x-y to reduce the functional equation to

$$g(z) = \frac{1}{4(1-\varepsilon)} \left[2g(\frac{z}{2(1-\varepsilon)}) + g(\frac{z+1}{2(1-\varepsilon)}) + g(\frac{z-1}{2(1-\varepsilon)}) \right]$$

• Note the symmetry $f(x,y)=f(y-x) \rightarrow g(z)=g(-z)$, then

$$g(z) = \frac{1}{2(1-\varepsilon)} \left[g\left(\frac{z}{2(1-\varepsilon)}\right) + g\left(\frac{z+1}{2(1-\varepsilon)}\right) \right]$$

Reduce to the 1D shift map dynamics when ε =0

Solution

- First solution is $\delta(z)$, *i.e.* $f_{\varepsilon}*(x, y) = \delta(x-y)$.
- Different from the original 1D solution $f^*(x, y) = 1$?
- Integrate out the "unknown" degree of freedom

$$Pf(x) = \int_{y=0}^{y=1} f^*(x, y) dy = \int_{y=0}^{y=1} \delta(x - y) dy = 1$$

• Another ansatz f(x,y)=h(x+y) gives

$$h(z) = \frac{\alpha}{4} \left[h(\frac{z}{2}) + 2h(\frac{z+\alpha}{2}) + h(\frac{z+2}{2}) \right], \quad (\alpha = \frac{1}{1-\varepsilon} > 1)$$

Conclusions and Future Work

- Conclusion
 - Ø Solve the functional equation
- Future Work
 - Ø Generalize this process to more maps.
- Question
 - Ø Is there ever Sensitive Dependence on Neglected Dynamics at the level of densities?

Thank You!