Symbolic Dynamics and Geodesic Laminations

Víctor Sirvent

http://www.ma.usb.ve/~vsirvent

Universidad Simón Bolívar
Caracas - Venezuela

Origins of Symbolic Dynamics

Let $f: X \rightarrow X$ a discrete dynamical system or $\phi_{t}: X \rightarrow X$ a continuous dynamical system.

We want to study the orbits of the dynamical system discretetizing the space X.

- Hadamard (1898), Morse (1921): Geodesic flows on constant negative curvature surfaces.
- Markov partition for Axiom A diffeomorphisms or Anosov Maps. (60's)

Irrational rotation on the circle

Let $R_{\alpha}: I \rightarrow I, R_{\alpha}(x)=x+\alpha(\bmod 1)$ with $\alpha \notin \mathbb{Q}$.

Irrational rotation on the circle

Let $R_{\alpha}: I \rightarrow I, R_{\alpha}(x)=x+\alpha(\bmod 1)$ with $\alpha \notin \mathbb{Q}$.

$I_{a}=[0,1-\alpha), I_{b}=[1-\alpha, 1)$.
$\nu: I \rightarrow\{a, b\}, \nu(x)=j$ if and only if $x \in I_{j}$.
$\mathbf{u}=\left\{\nu\left(R_{\alpha}^{n}(0)\right)\right\}_{n \geq 0}$.

Irrational rotation on the circle

Let $R_{\alpha}: I \rightarrow I, R_{\alpha}(x)=x+\alpha(\bmod 1)$ with $\alpha \notin \mathbb{Q}$.

$I_{a}=[0,1-\alpha), I_{b}=[1-\alpha, 1)$.
$\nu: I \rightarrow\{a, b\}, \nu(x)=j$ if and only if $x \in I_{j}$.
$\mathbf{u}=\left\{\nu\left(R_{\alpha}^{n}(0)\right)\right\}_{n \geq 0}$.
If $\alpha=\frac{\sqrt{5}-1}{2}$ then $\mathbf{u}=a b a a b a b a \cdots$ The Fibonacci sequence.
It is the fixed points of the substitution $a \rightarrow a b, b \rightarrow a$.

Symbolic and geometrical systems

Let $\sigma\left(v_{0} v_{1} \ldots\right)=v_{1} \ldots$ be the shift.
Let $\Omega=\overline{\left\{\sigma^{n}(\mathbf{u}) \mid n \geq 0\right\}}$, and the dynamical systems (Ω, σ).
There is a continuous and surjective map $\xi: \Omega \rightarrow I$ such that the diagram commutes:

$$
\begin{array}{rll}
\Omega \xrightarrow{\sigma} & \Omega \\
\xi \downarrow & & \downarrow \tag{1}\\
I \xrightarrow[R_{\alpha}]{ } & I
\end{array}
$$

Symbolic and geometrical systems

Let $\sigma\left(v_{0} v_{1} \ldots\right)=v_{1} \ldots$ be the shift.
Let $\Omega=\overline{\left\{\sigma^{n}(\mathbf{u}) \mid n \geq 0\right\}}$, and the dynamical systems (Ω, σ).
There is a continuous and surjective map $\xi: \Omega \rightarrow I$ such that the diagram commutes:

$$
\begin{align*}
\Omega \xrightarrow{\sigma} & \Omega \\
\xi \downarrow & \tag{2}\\
I \xrightarrow[R_{\alpha}]{ } & I
\end{align*}
$$

We are interested in the "inverse problem". We start with a symbolic system and we would like to find a "geometrical representation".

Complexity of a sequence

Let \mathbf{u} be a sequence on a finite alphabet.
The complexity of \mathbf{u} is
$p(n)$: the number of different subwords of length n in \mathbf{u}.

Complexity of a sequence

Let u be a sequence on a finite alphabet.
The complexity of \mathbf{u} is
$p(n)$: the number of different subwords of length n in \mathbf{u}.
The complexity of $\mathbf{u}=\left\{\nu\left(R_{\alpha}^{n}(0)\right)\right\}_{n \geq 0}$ is $n+1$.

Complexity of a sequence

Let \mathbf{u} be a sequence on a finite alphabet.
The complexity of u is
$p(n)$: the number of different subwords of length n in \mathbf{u}.
The complexity of $\mathbf{u}=\left\{\nu\left(R_{\alpha}^{n}(0)\right)\right\}_{n \geq 0}$ is $n+1$.
Hedlund-Morse (1938):
\mathbf{u} is eventually periodic if and only if $p(n) \leq n$.
So the simplest non-trivial sequences have complexity $n+1$. These sequences are called sturmian sequences.

Complexity of a sequence

Let \mathbf{u} be a sequence on a finite alphabet.
The complexity of u is
$p(n)$: the number of different subwords of length n in \mathbf{u}.
The complexity of $\mathbf{u}=\left\{\nu\left(R_{\alpha}^{n}(0)\right)\right\}_{n \geq 0}$ is $n+1$.
Hedlund-Morse (1938):
\mathbf{u} is eventually periodic if and only if $p(n) \leq n$.
So the simplest non-trivial sequences have complexity $n+1$. These sequences are called sturmian sequences.

Hedlund-Morse (1938): u is sturmian if and only if it is obtained from coding the orbit of a point on the circle under a rotation by irrational number, using the partition given by the continuity intervals.

Rauzy fractal

Substitution Π : $1 \rightarrow 12$, $2 \rightarrow 13,3 \rightarrow 1$. (Tribonacci substitution).

Fixed point $\mathbf{u}=\Pi^{\infty}(1)=121312112 \ldots$ Its complexity is $2 n+1$.

Rauzy fractal

Substitution Π : $1 \rightarrow 12,2 \rightarrow 13,3 \rightarrow 1$. (Tribonacci substitution).

Fixed point $\mathbf{u}=\Pi^{\infty}(1)=121312112 \ldots$ its complexity is $2 n+1$.
This fixed point gives the coding of the orbit of $T(x, y)=(x, y)+\left(\alpha, \alpha^{2}\right)$ according to the partition of the 2-dimensional torus given by the Rauzy fractal. Here $\alpha+\alpha^{2}+\alpha^{3}=1$.

Arnoux-Rauzy sequences

Let $u=u_{0} u_{1} \ldots$ be a sequence in three symbols.
A word is allowed or admissible in u if it is a finite subword of the sequence u.
We say that \mathbf{u} is Arnoux-Rauzy (AR) if

- it has complexity $2 n+1$
- for all n there are allowed subwords of length n, V_{n} and W_{n} such that $V_{n} 1, V_{n} 2, V_{n} 3$ and $1 W_{n}, 2 W_{n}, 3 W_{n}$ are also allowed words.

How to construct these sequences?

Arnoux-Rauzy sequences

Let us consider the following substitutions:

$$
\Pi_{1}:\left\{\begin{array}{llc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 12, \\
3 & \rightarrow & 13
\end{array} \quad \Pi_{2}:\left\{\begin{array}{lll}
1 & \rightarrow & 21 \\
2 & \rightarrow & 2, \\
3 & \rightarrow & 23
\end{array} \quad \Pi_{3}:\left\{\begin{array}{lll}
1 & \rightarrow & 31 \\
2 & \rightarrow & 32 \\
3 & \rightarrow & 3
\end{array}\right.\right.\right.
$$

Arnoux-Rauzy sequences

Let us consider the following substitutions:

$$
\Pi_{1}:\left\{\begin{array}{llc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 12, \\
3 & \rightarrow & 13
\end{array} \quad \Pi_{2}:\left\{\begin{array}{lll}
1 & \rightarrow & 21 \\
2 & \rightarrow & 2, \\
3 & \rightarrow & 23
\end{array} \quad \Pi_{3}:\left\{\begin{array}{lll}
1 & \rightarrow & 31 \\
2 & \rightarrow & 32 \\
3 & \rightarrow & 3
\end{array}\right.\right.\right.
$$

Theorem 1. [Arnoux-Rauzy(1991)] Let \mathbf{u} be a minimal sequence in the alphabet $\{1,2,3\}$. Then \mathbf{u} is $A R$ sequence, if and only if there exists a sequence $\left\{i_{k}\right\}_{k}$ with values in $\{1,2,3\}$ such that each symbol appears infinitely many times and

$$
\mathbf{u}=\lim _{k \rightarrow \infty} \Pi_{i_{1}} \cdots \Pi_{i_{k}}(\mathbf{u})
$$

Arnoux-Rauzy sequences

Let us consider the following substitutions:

$$
\Pi_{1}:\left\{\begin{array}{llc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 12, \\
3 & \rightarrow & 13
\end{array} \quad \Pi_{2}:\left\{\begin{array}{lll}
1 & \rightarrow & 21 \\
2 & \rightarrow & 2, \\
3 & \rightarrow & 23
\end{array} \quad \Pi_{3}:\left\{\begin{array}{lll}
1 & \rightarrow & 31 \\
2 & \rightarrow & 32 \\
3 & \rightarrow & 3
\end{array}\right.\right.\right.
$$

Theorem 2. [Arnoux-Rauzy(1991)] Let \mathbf{u} be a minimal sequence in the alphabet $\{1,2,3\}$. Then \mathbf{u} is $A R$ sequence, if and only if there exists a sequence $\left\{i_{k}\right\}_{k}$ with values in $\{1,2,3\}$ such that each symbol appears infinitely many times and

$$
\mathbf{u}=\lim _{k \rightarrow \infty} \Pi_{i_{1}} \cdots \Pi_{i_{k}}(\mathbf{u})
$$

If the sequence $\left\{i_{k}\right\}_{k}$ is periodic then the sequence \mathbf{u} is the fixed point of the substitution $\Pi_{i_{1}} \cdots \Pi_{i_{l}}$, where $\left\{i_{k}\right\}_{k}=\left\{i_{1}, \ldots, i_{l}, i_{1}, \ldots, i_{l}, \ldots\right\}$. This substitution is Pisot. In the case Π : $1 \rightarrow 12,2 \rightarrow 13,3 \rightarrow 1$. We have $\Pi^{3}=\Pi_{1} \Pi_{2} \Pi_{3}$.
So: $\left\{i_{k}\right\}_{k}=\{1,2,3,1,2,3, \ldots\}$

Arnoux-Rauzy sequences

Do all the AR sequences come from translations on the 2-torus?

Arnoux-Rauzy sequences

Do all the AR sequences come from translations on the 2 -torus?

No. Cassaigne, Ferenczi and Zamboni (2000).

Geometry of the dynamical systems (Ω, σ) ?
where $\Omega=\overline{\left\{\sigma^{n}(\mathbf{u}) \mid n \geq 0\right\}}$, and \mathbf{u} an AR sequence.

Interval exchange maps

Let \mathbf{u} be an AR sequence and

$$
M_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad M_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

be the matrices associated to the substitutions $\Pi_{1}, \Pi_{2}, \Pi_{3}$.
Let $\left\{i_{k}\right\}_{k}$ be the sequence associated to \mathbf{u}.
The image of the positive cone under the infinite product $M_{i_{1}} \cdots M_{i_{k}} \cdots$ is a straight line passing through the origin.
Let (α, β, γ) be the element of norm 1 in this line.

Interval exchange maps

Let $f=L_{I} \circ L_{I_{1}} \circ L_{I_{2}} \circ L_{I_{3}}$, where
$I=[0,1), I_{1}=[0, \alpha), I_{2}=[\alpha, \alpha+\beta), I_{3}=[\alpha+\beta, 1)$ and
L_{J} denotes the rotation of order 2 on the interval $J=[a, b)$, i.e.

$$
L_{J}(x)=\left\{\begin{array}{lr}
x+\frac{b-a}{2} & \text { if } a \leq x<\frac{a+b}{2} \\
x-\frac{b-a}{2} & \text { if } \frac{a+b}{2} \leq x<b \\
x & \text { otherwise }
\end{array}\right.
$$

Coding of IEMs

Let $\nu: I \rightarrow\{1,2,3\}: \nu(x)=i$ if and only if $x \in I_{i}$.
Let $\theta: I \rightarrow \Omega, \theta(x)=\left\{\nu\left(f^{n}(x)\right)\right\}_{n \geq 0}$
ν is continuous to the right and $\theta(f(x))=\sigma(\theta(x))$.

Coding of IEMs

Let $\nu: I \rightarrow\{1,2,3\}: \nu(x)=i$ if and only if $x \in I_{i}$.
Let $\theta: I \rightarrow \Omega, \theta(x)=\left\{\nu\left(f^{n}(x)\right)\right\}_{n \geq 0}$
ν is continuous to the right and $\theta(f(x))=\sigma(\theta(x))$.
We would like to know the points in Ω such that they are map to the same point in I.

Coding of IEMs

Let $\nu: I \rightarrow\{1,2,3\}: \nu(x)=i$ if and only if $x \in I_{i}$.
Let $\theta: I \rightarrow \Omega, \theta(x)=\left\{\nu\left(f^{n}(x)\right)\right\}_{n \geq 0}$
ν is continuous to the right and $\theta(f(x))=\sigma(\theta(x))$.
We would like to know the points in Ω such that they are map to the same point in I.
Since f is invertible we can consider

$$
\widetilde{\Omega}=\overline{\left\{\nu\left(f^{n}(x)\right) \mid x \in I, n \in \mathbb{Z}\right\}}
$$

so we have the map $\tilde{\theta}: I \rightarrow \widetilde{\Omega}$ that send the point x to itinerary of its two sided infinite f-orbit.

Coding of IEMs

Let $\nu: I \rightarrow\{1,2,3\}: \nu(x)=i$ if and only if $x \in I_{i}$.
Let $\theta: I \rightarrow \Omega, \theta(x)=\left\{\nu\left(f^{n}(x)\right)\right\}_{n \geq 0}$
ν is continuous to the right and $\theta(f(x))=\sigma(\theta(x))$.
We would like to know the points in Ω such that they are map to the same point in I.
Since f is invertible we can consider

$$
\widetilde{\Omega}=\overline{\left\{\nu\left(f^{n}(x)\right) \mid x \in I, n \in \mathbb{Z}\right\}}
$$

so we have the map $\tilde{\theta}: I \rightarrow \widetilde{\Omega}$ that send the point x to itinerary of its two sided infinite f-orbit.
We would like to know the points in $\widetilde{\Omega}$ such that they are map to the same point in I.

Coding of IEMs

Let $x_{1}=0, x_{2}=\alpha, x_{3}=\alpha+\beta$ be the extremities of the canonical intervals and $y_{1}=\alpha / 2, y_{2}=\alpha+\beta / 2$, and $y_{3}=\alpha+\beta+\gamma / 2$ be the middle points of the canonical intervals. These points are the discontinuities of the iet f.

$$
\theta\left(f\left(y_{1}\right)\right)=\theta\left(f\left(y_{2}\right)\right)=\theta\left(f\left(y_{3}\right)\right)=\mathbf{u}
$$

And the coding of the backward orbit of x_{i} is given by $\overline{\mathbf{u}}=\ldots u_{2} u_{1} u_{0}$

Geodesic Lamination on the disk

A geodesic lamination on \mathbb{D}^{2} is a non-empty closed set of geodesics of the disk and that any two of these geodesics do not intersect except at their end points.

Construction of the geodesic lamination

Let $v_{0} \ldots v_{k}$ be an admissible word and

$$
\left[v_{0} \ldots v_{k}\right]=I_{v_{0}} \cap f^{-1}\left(I_{v_{1}}\right) \cap \cdots \cap f^{-k}\left(I_{v_{k}}\right)
$$

the corresponding cylinder in \mathbb{S}^{1}.

Construction of the geodesic lamination

Let $v_{0} \ldots v_{k}$ be an admissible word and

$$
\left[v_{0} \ldots v_{k}\right]=I_{v_{0}} \cap f^{-1}\left(I_{v_{1}}\right) \cap \cdots \cap f^{-k}\left(I_{v_{k}}\right)
$$

the corresponding cylinder in \mathbb{S}^{1}.
We join by geodesics consecutive extreme points that belong to different components of a given cylinder.
We do this for all cylinders and we take the closure. As a result we get the space Λ.

Construction of the geodesic lamination

Let $v_{0} \ldots v_{k}$ be an admissible word and

$$
\left[v_{0} \ldots v_{k}\right]=I_{v_{0}} \cap f^{-1}\left(I_{v_{1}}\right) \cap \cdots \cap f^{-k}\left(I_{v_{k}}\right)
$$

the corresponding cylinder in \mathbb{S}^{1}.
We join by geodesics consecutive extreme points that belong to different components of a given cylinder.
We do this for all cylinders and we take the closure. As a result we get the space Λ.

We are interested in points of $\widetilde{\Omega}$ with the same past and different futures and conversely in points with the same future and different pasts.

Properties of the geodesic lamination

Properties:

- Λ is a geodesic lamination.
- Λ is the closure of the geodesics γ such that the image under $\tilde{\theta}$ of the end points of γ have the same past and different futures.
- Λ is the closure of the geodesics γ such that the image under $\tilde{\theta}$ of the end points of γ have the same future and different pasts.
- Λ is invariant under the rotation by $1 / 2$.

The geodesic lamination

Tribonacci lamination

Dynamical system on the lamination

Let $F: \Lambda \rightarrow \Lambda$ defined as let $\gamma \in \Lambda$ with end points a_{γ} and b_{γ}, $F(\gamma)$ is the geodesic that join $f\left(a_{\gamma}\right)$ with $f\left(b_{\gamma}^{-}\right)$.

Properties:

- F is well defined.
- F is continuous.
- (Λ, F) is semi-conjugate to (Ω, σ).
- (Λ, F) is semi-conjugate to $(\widetilde{\Omega}, \sigma)$.

Summary

Theorem 3. Let \mathbf{u} be an $A R$ sequence and $(\Omega, \sigma),(\widetilde{\Omega}, \sigma)$ their associated \mathbb{N} and \mathbb{Z} dynamical systems respectively. Then there exists Λ a geodesic lamination on \mathbb{D}^{2} and a continuous dynamical system (Λ, F) such that:

- (Λ, F) is semi-conjugate to (Ω, σ).
- (Λ, F) is semi-conjugate to $(\widetilde{\Omega}, \sigma)$.
- Λ is invariant under the rotation by $1 / 2$.

Tribonacci Case

The symbolic dynamical system (Ω, σ) is semi-conjugate to (\mathbb{T}^{2}, T) an irrational translation.
So (Λ, F) is semi-conjugate to $\left(\mathbb{T}^{2}, T\right)$.

Tribonacci Case

The symbolic dynamical system (Ω, σ) is semi-conjugate to (\mathbb{T}^{2}, T) an irrational translation.
So (Λ, F) is semi-conjugate to $\left(\mathbb{T}^{2}, T\right)$.
Let \mathcal{R} be the Rauzy fractal.
It has a self-similar structure. It is the fixed point of the IFS $\left\{f_{1}, f_{2}, f_{3}\right\}$.

$$
f_{1}(z)=\beta z, \quad f_{2}(z)=\beta^{2} z+1, \quad f_{3}(z)=\beta^{3} z+\beta+1 .
$$

The roots of $x^{3}-x^{2}-x-1=0$ are λ and $\beta, \bar{\beta}, \lambda>1,|\beta|<1$.

Tribonacci Case

The geodesic lamination Λ coincides with the lamination obtained using the self-similar structure (last week talk).

So Λ has a transverse measure μ and an expanding dynamical system $G: \Lambda \rightarrow \Lambda$.
$G_{*} \mu=\lambda^{s_{0}} \mu$, where $s_{0}=\log \nu / \log \lambda, \nu^{4}-2 \nu-1=0, \nu>1$.

Tribonacci Case

Let $G_{i}^{-1}: \Lambda \rightarrow \Lambda_{i}$ the inverse branches of G and

$$
\Lambda_{i}=\left\{\gamma \in \Lambda: \text { the end points of } \gamma \in I_{i}\right\}
$$

So the following diagram commutes:

$$
\begin{array}{rll}
\Lambda & \\
G_{i}^{-1} \downarrow & & \Lambda \\
& & \downarrow_{i}^{-1} \\
\Lambda_{i} & \\
\widetilde{F} & \Lambda_{i}
\end{array}
$$

where \widetilde{F} is the induced map of F in Λ_{i} :

$$
\widetilde{F}(\gamma)=F^{n_{1}}(\gamma): \quad F^{n_{1}}(\gamma) \in \Lambda_{i}, F^{n}(\gamma) \notin \Lambda_{i}, \text { if } 1 \leq n<n_{1} .
$$

