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Origins of Symbolic Dynamics

fLet f: X — X adiscrete dynamical systemor ¢; : X — X aT
continuous dynamical system.

We want to study the orbits of the dynamical system
discretetizing the space X.

# Hadamard (1898), Morse (1921). Geodesic flows on
constant negative curvature surfaces.

# Markov partition for Axiom A diffeomorphisms or
Anosov Maps. (60’s)
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|rrational rotation on thecircle

-

Let Ry : I — I, Ry(x) =z 4+ « (mod 1) with o ¢ Q.

-

The Fields Institute



|rrational rotation on thecircle

-

Let Ry : I — I, Ry(x) =z 4+ « (mod 1) with o ¢ Q.

=

I,=10,1—a), ,=[1—a,l).
v:I—A{a,b},v(x) =7 ifandonly if z € I;.
u = {U(RL(0)) bnso.
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|rrational rotation on thecircle

fLe'[R@:]%I,Roé(a?):x—l—oz(modll)Wi’[hcugéQ. T

I,=10,1—a), ,=[1—a,l).
v:I—A{a,b},v(x) =7 ifandonly if z € I;.
u = {U(RL(0)) bnso.

If o = @‘1 then u = abaababa - - - The Fibonacci sequence.
It is the fixed points of the substitution ¢ — ab, b — «.
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Symbolic and geometrical systems
-

Let 0(2}01}1 . ) = v1 ... be the shift.
Let 2 = {o"(u) |n > 0}, and the dynamical systems ({2, o).

There is a continuous and surjective map ¢ : 2 — I such
that the diagram commutes:

ol L @
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Symbolic and geometrical systems
-

Let 0(2}01}1 . ) = v1 ... be the shift.
Let 2 = {o"(u) |n > 0}, and the dynamical systems ({2, o).

There is a continuous and surjective map ¢ : 2 — I such
that the diagram commutes:

ol L 2

We are interested in the “inverse problem”. We start with a
symbolic system and we would like to find a “geometrical

Lrepresentation”. J

V. Sirvent The Fields Institute January 25, 2006 — p.



Complexity of a sequence

-

Let u be a sequence on a finite alphabet.

The complexity of u Is
p(n): the number of different subwords of length » in u.
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Complexity of a sequence

-

Let u be a sequence on a finite alphabet.
The complexity of u is

p(n): the number of different subwords of length » in u.

The complexity of u = {v(R2(0)) } >0 IS n + 1.

January 25, 2006 — p.



Complexity of a sequence
-

Let u be a sequence on a finite alphabet.

The complexity of u Is
p(n): the number of different subwords of length » in u.

The complexity of u = {v(R2(0)) } >0 IS n + 1.

Hedlund-Morse (1938):
u Is eventually periodic if and only if p(n) < n.

So the simplest non-trivial sequences have complexity
n + 1. These sequences are called sturmian sequences.
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Complexity of a sequence
fLet u be a sequence on a finite alphabet.
The complexity of u Is
p(n): the number of different subwords of length » in u.
The complexity of u = {v(R2(0)) } >0 IS n + 1.

Hedlund-Morse (1938):
u Is eventually periodic if and only if p(n) < n.

So the simplest non-trivial sequences have complexity
n + 1. These sequences are called sturmian sequences.

Hedlund-Morse (1938): u is sturmian if and only if it is
obtained from coding the orbit of a point on the circle under
a rotation by irrational number, using the partition given by

Lthe continuity intervals. J
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Rauzy fractal

-

Substitution IT: 1 — 12, 2 — 13, 3 — 1. (Tribonacci
substitution).

Fixed point u = Hoo(l) — 121312112 ... its complexity is 2n + 1.

=

o -

V. Sirvent The Fields Institute January 25, 2006 — p.



Rauzy fractal

fSubstitution II. 1 — 12,2 — 13, 3 — 1. (Tribonacci
substitution).

Fixed point u = Hoo(l) — 121312112 ... its complexity is 2n + 1.

This fixed point gives the coding of the orbit of

T(z,y) = (z,y) + (a, &?) according to the partition of the
2-dimensional torus given by the Rauzy fractal. Here
a+a?+ad=1.

-
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Arnoux-Rauzy sequences

=

fLet u = uguq ... be a sequence in three symbols.

A word is allowed or admissible in u if it Is a finite subword
of the sequence u.

We say that u is Arnoux-Rauzy (AR) if
# it has complexity 2n + 1

o for all n there are allowed subwords of length n, V,, and
W, such that V,,1, V,,2, V,,3 and 1W,,, 2W,,, 3W,, are also
allowed words.

How to construct these sequences?

o -
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Arnoux-Rauzy sequences

Let us consider the following substitutions:

( 7 (

1 — 1 1 — 21 1 — 31
II;:¢ 2 — 12, o : ¢ 2 — 2, IIs:4 2 — 32
| 3 — 13 | 3 — 23 | 3 - 3
V. Sirvent The Fields Institute
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Arnoux-Rauzy sequences

Let us consider the following substitutions:

( ( (

1 — 1 1 — 21 1 — 31
II;:¢ 2 — 12, o : ¢ 2 — 2, IIs:4 2 — 32
\ 3 — 13 \ 3 — 23 \ 3 — 3

Theorem 1. [Arnoux-Rauzy(1991)] Let u be a minimal sequence in the
alphabet {1,2,3}. Then u is AR sequence, if and only if there exists a

sequence {ij } with values in {1, 2, 3} such that each symbol appears
Infinitely many times and

u= lim Hil - -Hik(u).

k— 00
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Arnoux-Rauzy sequences
|7Let us consider the following substitutions: T

( ( (

1 — 1 1 — 21 1 — 31
II;:¢ 2 — 12, o : ¢ 2 — 2, IIs:4 2 — 32
\ 3 — 13 \ 3 — 23 \ 3 — 3

Theorem 2. [Arnoux-Rauzy(1991)] Let u be a minimal sequence in the
alphabet {1,2,3}. Then u is AR sequence, if and only if there exists a

sequence {ij } with values in {1, 2, 3} such that each symbol appears
Infinitely many times and

u= lim Hil - -Hik(u).

k— 00

If the sequence {i }« is periodic then the sequence u is the fixed point of the substitution
II;, ---1I;,, where {ig }x = {%1,...,%,%1,...,%,...}. This substitution is Pisot.

Inthecase IT: 1 — 12,2 — 13,3 — 1. We have II3 = I1;II,115.
Lw: (i = {1,2,3,1,2,3,...}) J
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Arnoux-Rauzy sequences

-

Do all the AR sequences come from translations on the
2-torus?

=



Arnoux-Rauzy sequences

-

Do all the AR sequences come from translations on the
2-torus?

No. Cassaigne, Ferenczi and Zamboni (2000).

Geometry of the dynamical systems (€2, o)?

where ) = {¢"(u) | n > 0}, and u an AR sequence.

o -
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| nterval exchange maps
et u be an AR sequence and

(i) 1)

be the matrices associated to the substitutions 11y, Ils, II3.

L

o O =
N
S = =
o = O
_ = O
_ o
— = O
_ O O

Let {i;}, be the sequence associated to u.

The image of the positive cone under the infinite product
M;, --- M;, --- 1S a straight line passing through the origin.

Let («, 3,7) be the element of norm 1 in this line.

o -
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L

| nterval exchange maps

et f=LrolLj oLy, oLy, where

=

I=10,1),1=10,a), Is =|a,a+ ), I3 =|a+ F,1) and
L ;y denotes the rotation of order 2 on the interval J = |a, b),

l.e.

V. Sirvent

(:I:—I—b_Ta ifa§x<a7+b

Ly(z)=9q z—%2 ifetb <z<p
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Coding of IEMSs
-

Letv: 1 — {1,2,3}: v(z) =¢ifand only if z € I,.
Letd: 1 — Q, 0(x) ={v(f"(x))}n>o0
v IS continuous to the right and 4(f(x)) = o(0(x)).
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Coding of IEMSs

fLet v: I —{1,2,3}: v(x)=qifand only if z € I;. T

Letd: 1 — Q, 0(x) ={v(f"(x))}n>o0
v IS continuous to the right and 4(f(x)) = o(0(x)).

We would like to know the points in 2 such that they are
map to the same pointin /.

o -
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Coding of IEMSs
fLet v: I —{1,2,3}: v(x)=qifand only if z € I;. T
Letd: 1 — Q, 0(x) ={v(f"(x))}n>o0
v IS continuous to the right and 4(f(x)) = o(0(x)).

We would like to know the points in 2 such that they are
map to the same pointin /.

Since f Is invertible we can consider

~

Q={v(f*(x)) |z el, neZ}

so we have the map 6 : I — Q that send the point z to
itinerary of its two sided infinite f-orbit.

o -
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Coding of IEMSs
-

Letv: 1 — {1,2,3}: v(z) =¢ifand only if z € I,.
Letd: 1 — Q, 0(x) ={v(f"(x))}n>o0
v IS continuous to the right and 4(f(x)) = o(0(x)).

We would like to know the points in 2 such that they are
map to the same pointin /.

Since f Is invertible we can consider

~

Q={v(f*(z))|zel, necZ}

so we have the map 6 : I — Q that send the point z to
itinerary of its two sided infinite f-orbit.

We would like to know the points in Q such that they are
map to the same pointin /. J
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fLet r1 =0, z90 = «, v3 = o + (3 be the extremities of the

Coding of IEMSs

canonical interva
yz3 =a+ 3+ /2

sand y; = a/2, yo = a+ /2, and
pe the middle points of the canonical

=

Intervals. These points are the discontinuities of the iet f.

0(f(y1)) = 0(f(y2)) = 0(f(y3)) = u.
And the coding of the backward orbit of z; is given by

u—=...uujug

.

V. Sirven
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Geodesic Lamination on the disk

o .

A geodesic lamination on D? is a non-empty closed set of
geodesics of the disk and that any two of these geodesics
do not intersect except at their end points.

o -
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Construction of the geodesic lamination

-

Let vy ... v, be an admissible word and

o ..o =Ty N fF YT, ) N -0 fR(T,)

the corresponding cylinder in S'.
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Construction of the geodesic lamination

-

Let vy ... v, be an admissible word and

o ..o =Ty N fF YT, ) N -0 fR(T,)

the corresponding cylinder in S'.

We join by geodesics consecutive extreme points that
belong to different components of a given cylinder.

We do this for all cylinders and we take the closure.
As a result we get the space A.

o -
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Construction of the geodesic lamination

-

Let vy ... v, be an admissible word and

o ..o =Ty N fF YT, ) N -0 fR(T,)

the corresponding cylinder in S'.

We join by geodesics consecutive extreme points that
belong to different components of a given cylinder.

We do this for all cylinders and we take the closure.
As a result we get the space A.

We are interested in points of 2 with the same past and
different futures and conversely in points with the same

quture and different pasts. J

V. Sirven
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Properties of the geodesic lamination
fProperties: T
#® A Is a geodesic lamination.

#® A is the closure of the geodesics ~ such that the image

under 6 of the end points of v have the same past and
different futures.

#® A is the closure of the geodesics ~ such that the image

under 6 of the end points of v have the same future and
different pasts.

# A is invariant under the rotation by 1/2.

o -
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The geodesic lamination
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Tribonaccl lamination




Dynamical system on the lamination

- .

Let /' : A — A defined as let v € A with end points a., and b,,
F'(v) Is the geodesic that join f(a,) with f(b5 ).

Properties:

o FIs well defined.

# F'Is continuous.

® (A, F)Is semi-conjugate to (2, 0).

~

® (A, F)Is semi-conjugate to (2, 0).

o -
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Summary

o .

Theorem 3. Let u be an AR sequence and (2, o), (€2, o) their
associated N and Z dynamical systems respectively. Then there exists

A a geodesic lamination on D? and a continuous dynamical system
(A, F') such that:

® (A, F)is semi-conjugate to (€2, o).
® (A, F)is semi-conjugate to (2, o).
® A is invariant under the rotation by 1/2.

o -
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Tribonaccl Case

=

fThe symbolic dynamical system (€2, o) IS semi-conjugate to
(T?,T) an irrational translation.

So (A, F) is semi-conjugate to (T2, T).

o -
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Tribonaccl Case

=

fThe symbolic dynamical system (€2, o) IS semi-conjugate to
(T?,T) an irrational translation.

So (A, F) is semi-conjugate to (T2, T).
Let R be the Rauzy fractal.
It has a self-similar structure. It is the fixed point of the IFS

{f17 f27 f3}

f1(2) = Bz, fal2) = FPz+1, f3(2)=3FB2z+8+1.

Theroots_ofa:3—:z;2—;z:—1:Oare
Arand g, 8, A > 1, |3] < 1.

o -
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Tribonaccl Case

=

fThe geodesic lamination A coincides with the lamination
obtained using the self-similar structure (last week talk).

So A has a transverse measure ;. and an expanding
dynamical system G : A — A.

Gt = \*u, where so = logv/log\, v* —2v —1=0, v > 1.

o -
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Tribonaccl Case

-

Let G;': A — A; the inverse branches of G and

A, ={v € A : the endpoints of v € I;}
So the following diagram commutes:

F
—

A A
Gill lGil
A

Np —— A
F

where F is the induced map of F in A;:

L F(y) = FUi(y): FUi(y) e, F'(7) ¢ Ay, if1<n<ng.
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