Symbolic Dynamics and Geodesic Laminations

Víctor Sirvent

http://www.ma.usb.ve/~vsirvent

Universidad Simón Bolívar Caracas – Venezuela

Origins of Symbolic Dynamics

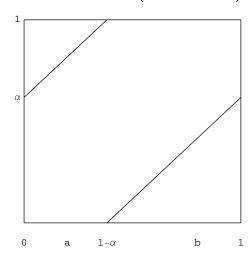
Let $f: X \to X$ a discrete dynamical system or $\phi_t: X \to X$ a continuous dynamical system.

We want to study the orbits of the dynamical system discretetizing the space X.

- Hadamard (1898), Morse (1921): Geodesic flows on constant negative curvature surfaces.
- Markov partition for Axiom A diffeomorphisms or Anosov Maps. (60's)

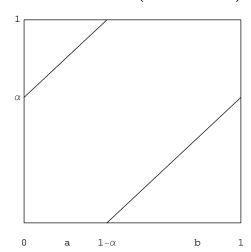
Irrational rotation on the circle

Let $R_{\alpha}: I \to I$, $R_{\alpha}(x) = x + \alpha \pmod{1}$ with $\alpha \notin \mathbb{Q}$.



Irrational rotation on the circle

Let $R_{\alpha}: I \to I$, $R_{\alpha}(x) = x + \alpha \pmod{1}$ with $\alpha \notin \mathbb{Q}$.



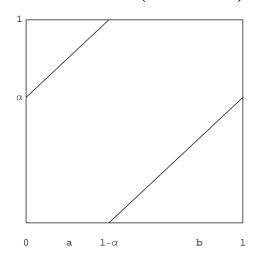
$$I_a = [0, 1 - \alpha), I_b = [1 - \alpha, 1).$$

 $\nu: I \to \{a,b\}, \ \nu(x) = j \text{ if and only if } x \in I_j.$

$$\mathbf{u} = \{ \nu(R_{\alpha}^{n}(0)) \}_{n \ge 0}.$$

Irrational rotation on the circle

Let $R_{\alpha}: I \to I$, $R_{\alpha}(x) = x + \alpha \pmod{1}$ with $\alpha \notin \mathbb{Q}$.



$$I_a = [0, 1 - \alpha), I_b = [1 - \alpha, 1).$$

 $\nu: I \to \{a,b\}, \ \nu(x) = j \text{ if and only if } x \in I_j.$

$$\mathbf{u} = \{ \nu(R_{\alpha}^{n}(0)) \}_{n \ge 0}.$$

If $\alpha = \frac{\sqrt{5}-1}{2}$ then $\mathbf{u} = abaababa \cdots$ The Fibonacci sequence. It is the fixed points of the substitution $a \to ab$, $b \to a$.

Symbolic and geometrical systems

Let $\sigma(v_0v_1\ldots)=v_1\ldots$ be the *shift*.

Let $\Omega = \overline{\{\sigma^n(\mathbf{u}) \mid n \geq 0\}}$, and the dynamical systems (Ω, σ) .

There is a continuous and surjective map $\xi: \Omega \to I$ such that the diagram commutes:

$$\Omega \xrightarrow{\sigma} \Omega$$

$$\xi \downarrow \qquad \qquad \downarrow \xi$$

$$I \xrightarrow{R_{\alpha}} I$$
(1)

V. Sirvent The Fields Institute January 25, 2006 – p

Symbolic and geometrical systems

Let $\sigma(v_0v_1\ldots)=v_1\ldots$ be the *shift*.

Let $\Omega = \overline{\{\sigma^n(\mathbf{u}) \mid n \geq 0\}}$, and the dynamical systems (Ω, σ) .

There is a continuous and surjective map $\xi:\Omega\to I$ such that the diagram commutes:

$$\Omega \xrightarrow{\sigma} \Omega$$

$$\xi \downarrow \qquad \qquad \downarrow \xi$$

$$I \xrightarrow{R_{\alpha}} I$$
(2)

We are interested in the "inverse problem". We start with a symbolic system and we would like to find a "geometrical representation".

Let u be a sequence on a finite alphabet.

The complexity of u is

p(n): the number of different subwords of length n in \mathbf{u} .

Let u be a sequence on a finite alphabet.

The complexity of \mathbf{u} is p(n): the number of different subwords of length n in \mathbf{u} .

The complexity of $\mathbf{u} = \{\nu(R_{\alpha}^n(0))\}_{n\geq 0}$ is n+1.

Let u be a sequence on a finite alphabet.

The complexity of ${\bf u}$ is

p(n): the number of different subwords of length n in \mathbf{u} .

The complexity of $\mathbf{u} = \{\nu(R_{\alpha}^n(0))\}_{n\geq 0}$ is n+1.

Hedlund-Morse (1938):

u is eventually periodic if and only if $p(n) \leq n$.

So the simplest non-trivial sequences have complexity n+1. These sequences are called *sturmian sequences*.

Let u be a sequence on a finite alphabet.

The complexity of \mathbf{u} is p(n): the number of different subwords of length n in \mathbf{u} .

The complexity of $\mathbf{u} = \{\nu(R_{\alpha}^n(0))\}_{n\geq 0}$ is n+1.

Hedlund-Morse (1938): u is eventually periodic if and only if $p(n) \le n$.

So the simplest non-trivial sequences have complexity n+1. These sequences are called *sturmian sequences*.

Hedlund-Morse (1938): \mathbf{u} is sturmian if and only if it is obtained from coding the orbit of a point on the circle under a rotation by irrational number, using the partition given by the continuity intervals.

Rauzy fractal

Substitution Π : $1 \rightarrow 12$, $2 \rightarrow 13$, $3 \rightarrow 1$. (Tribonacci substitution).

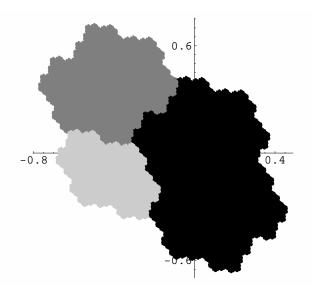
Fixed point $\mathbf{u} = \Pi^{\infty}(1) = 121312112\dots$ Its complexity is 2n + 1.

Rauzy fractal

Substitution Π : $1 \rightarrow 12$, $2 \rightarrow 13$, $3 \rightarrow 1$. (Tribonacci substitution).

Fixed point $\mathbf{u} = \Pi^{\infty}(1) = 121312112\dots$ Its complexity is 2n + 1.

This fixed point gives the coding of the orbit of $T(x,y)=(x,y)+(\alpha,\alpha^2)$ according to the partition of the 2-dimensional torus given by the Rauzy fractal. Here $\alpha+\alpha^2+\alpha^3=1$.



Let $u = u_0 u_1 \dots$ be a sequence in three symbols.

A word is *allowed or admissible* in ${\bf u}$ if it is a finite subword of the sequence ${\bf u}$.

We say that u is Arnoux-Rauzy (AR) if

- it has complexity 2n+1
- for all n there are allowed subwords of length n, V_n and W_n such that V_n1 , V_n2 , V_n3 and $1W_n$, $2W_n$, $3W_n$ are also allowed words.

How to construct these sequences?

Let us consider the following substitutions:

Let us consider the following substitutions:

$$\Pi_{1}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 1 \\ 2 & \rightarrow & 12, & \Pi_{2}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 21 \\ 2 & \rightarrow & 2, & \Pi_{3}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 31 \\ 2 & \rightarrow & 32 \\ 3 & \rightarrow & 3 \end{array} \right. \right.$$

Theorem 1. [Arnoux-Rauzy(1991)] Let ${\bf u}$ be a minimal sequence in the alphabet $\{1,2,3\}$. Then ${\bf u}$ is AR sequence, if and only if there exists a sequence $\{i_k\}_k$ with values in $\{1,2,3\}$ such that each symbol appears infinitely many times and

$$\mathbf{u} = \lim_{k \to \infty} \Pi_{i_1} \cdots \Pi_{i_k}(\mathbf{u}).$$

Let us consider the following substitutions:

$$\Pi_{1}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 1 \\ 2 & \rightarrow & 12, & \Pi_{2}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 21 \\ 2 & \rightarrow & 2, & \Pi_{3}: \left\{ \begin{array}{ccccc} 1 & \rightarrow & 31 \\ 2 & \rightarrow & 32 \\ 3 & \rightarrow & 3 \end{array} \right. \right.$$

Theorem 2. [Arnoux-Rauzy(1991)] Let ${\bf u}$ be a minimal sequence in the alphabet $\{1,2,3\}$. Then ${\bf u}$ is AR sequence, if and only if there exists a sequence $\{i_k\}_k$ with values in $\{1,2,3\}$ such that each symbol appears infinitely many times and

$$\mathbf{u} = \lim_{k \to \infty} \Pi_{i_1} \cdots \Pi_{i_k}(\mathbf{u}).$$

If the sequence $\{i_k\}_k$ is periodic then the sequence $\mathbf u$ is the fixed point of the substitution $\Pi_{i_1}\cdots\Pi_{i_l}$, where $\{i_k\}_k=\{i_1,\ldots,i_l,i_1,\ldots,i_l,\ldots\}$. This substitution is Pisot. In the case $\Pi\colon 1\to 12,\,2\to 13,\,3\to 1$. We have $\Pi^3=\Pi_1\Pi_2\Pi_3$.

-So:
$$\{i_k\}_k = \{1, 2, 3, 1, 2, 3, \ldots\}$$

Do all the AR sequences come from translations on the 2-torus?

Do all the AR sequences come from translations on the 2-torus?

No. Cassaigne, Ferenczi and Zamboni (2000).

Geometry of the dynamical systems (Ω, σ) ?

where $\Omega = \overline{\{\sigma^n(\mathbf{u}) \mid n \geq 0\}}$, and \mathbf{u} an AR sequence.

Interval exchange maps

Let u be an AR sequence and

$$M_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

be the matrices associated to the substitutions Π_1 , Π_2 , Π_3 .

Let $\{i_k\}_k$ be the sequence associated to \mathbf{u} .

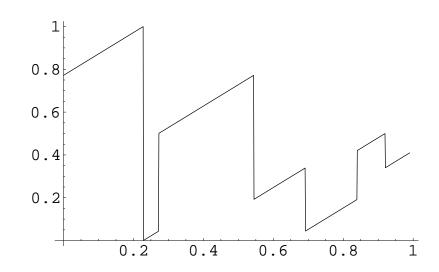
The image of the positive cone under the infinite product $M_{i_1} \cdots M_{i_k} \cdots$ is a straight line passing through the origin.

Let (α, β, γ) be the element of norm 1 in this line.

Interval exchange maps

Let $f=L_I\circ L_{I_1}\circ L_{I_2}\circ L_{I_3}$, where $I=[0,1),\ I_1=[0,\alpha),\ I_2=[\alpha,\alpha+\beta),\ I_3=[\alpha+\beta,1)$ and L_J denotes the rotation of order 2 on the interval J=[a,b), i.e.

$$L_J(x) = \begin{cases} x + \frac{b-a}{2} & \text{if } a \le x < \frac{a+b}{2} \\ x - \frac{b-a}{2} & \text{if } \frac{a+b}{2} \le x < b \\ x & \text{otherwise.} \end{cases}$$



Let $\nu: I \to \{1, 2, 3\}$: $\nu(x) = i$ if and only if $x \in I_i$.

Let $\theta: I \to \Omega$, $\theta(x) = {\nu(f^n(x))}_{n \ge 0}$

 ν is continuous to the right and $\theta(f(x)) = \sigma(\theta(x))$.

Let $\nu: I \to \{1, 2, 3\}$: $\nu(x) = i$ if and only if $x \in I_i$.

Let $\theta: I \to \Omega$, $\theta(x) = {\nu(f^n(x))}_{n \ge 0}$

 ν is continuous to the right and $\theta(f(x)) = \sigma(\theta(x))$.

We would like to know the points in Ω such that they are map to the same point in I.

Let $\nu: I \to \{1, 2, 3\}$: $\nu(x) = i$ if and only if $x \in I_i$.

Let $\theta: I \to \Omega$, $\theta(x) = {\nu(f^n(x))}_{n \ge 0}$

 ν is continuous to the right and $\theta(f(x)) = \sigma(\theta(x))$.

We would like to know the points in Ω such that they are map to the same point in I.

Since f is invertible we can consider

$$\widetilde{\Omega} = \overline{\{\nu(f^n(x)) \mid x \in I, \ n \in \mathbb{Z}\}}$$

so we have the map $\widetilde{\theta}:I\to\widetilde{\Omega}$ that send the point x to itinerary of its two sided infinite f-orbit.

Let $\nu: I \to \{1, 2, 3\}$: $\nu(x) = i$ if and only if $x \in I_i$.

Let
$$\theta: I \to \Omega$$
, $\theta(x) = {\nu(f^n(x))}_{n \ge 0}$

 ν is continuous to the right and $\theta(f(x)) = \sigma(\theta(x))$.

We would like to know the points in Ω such that they are map to the same point in I.

Since f is invertible we can consider

$$\widetilde{\Omega} = \overline{\{\nu(f^n(x)) \mid x \in I, \ n \in \mathbb{Z}\}}$$

so we have the map $\widetilde{\theta}:I\to\widetilde{\Omega}$ that send the point x to itinerary of its two sided infinite f-orbit.

We would like to know the points in $\widetilde{\Omega}$ such that they are map to the same point in I.

Let $x_1=0$, $x_2=\alpha$, $x_3=\alpha+\beta$ be the extremities of the canonical intervals and $y_1=\alpha/2$, $y_2=\alpha+\beta/2$, and $y_3=\alpha+\beta+\gamma/2$ be the middle points of the canonical intervals. These points are the discontinuities of the iet f.

$$\theta(f(y_1)) = \theta(f(y_2)) = \theta(f(y_3)) = \mathbf{u}.$$

And the coding of the backward orbit of x_i is given by $\overline{\mathbf{u}} = \dots u_2 u_1 u_0$

Geodesic Lamination on the disk

A *geodesic lamination* on \mathbb{D}^2 is a non-empty closed set of geodesics of the disk and that any two of these geodesics do not intersect except at their end points.

Construction of the geodesic lamination

Let $v_0 \dots v_k$ be an admissible word and

$$[v_0 \dots v_k] = I_{v_0} \cap f^{-1}(I_{v_1}) \cap \dots \cap f^{-k}(I_{v_k})$$

the corresponding cylinder in \mathbb{S}^1 .

Construction of the geodesic lamination

Let $v_0 \dots v_k$ be an admissible word and

$$[v_0 \dots v_k] = I_{v_0} \cap f^{-1}(I_{v_1}) \cap \dots \cap f^{-k}(I_{v_k})$$

the corresponding cylinder in \mathbb{S}^1 .

We join by geodesics consecutive extreme points that belong to different components of a given cylinder.

We do this for all cylinders and we take the closure. As a result we get the space Λ .

Construction of the geodesic lamination

Let $v_0 \dots v_k$ be an admissible word and

$$[v_0 \dots v_k] = I_{v_0} \cap f^{-1}(I_{v_1}) \cap \dots \cap f^{-k}(I_{v_k})$$

the corresponding cylinder in \mathbb{S}^1 .

We join by geodesics consecutive extreme points that belong to different components of a given cylinder.

We do this for all cylinders and we take the closure. As a result we get the space Λ .

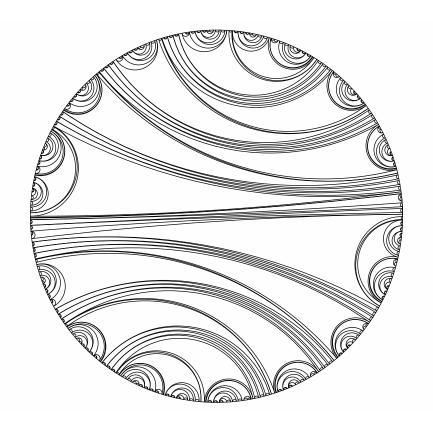
We are interested in points of $\widetilde{\Omega}$ with the same past and different futures and conversely in points with the same future and different pasts.

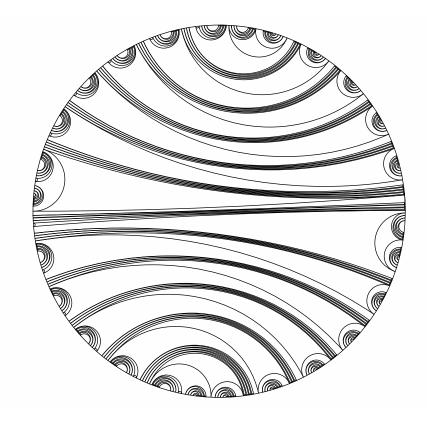
Properties of the geodesic lamination

Properties:

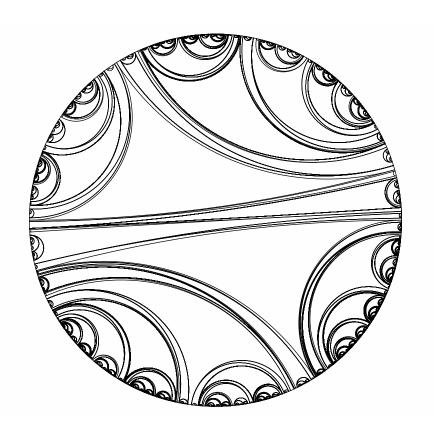
- ullet Λ is a geodesic lamination.
- Λ is the closure of the geodesics γ such that the image under $\tilde{\theta}$ of the end points of γ have the same past and different futures.
- Λ is the closure of the geodesics γ such that the image under $\tilde{\theta}$ of the end points of γ have the same future and different pasts.
- Λ is invariant under the rotation by 1/2.

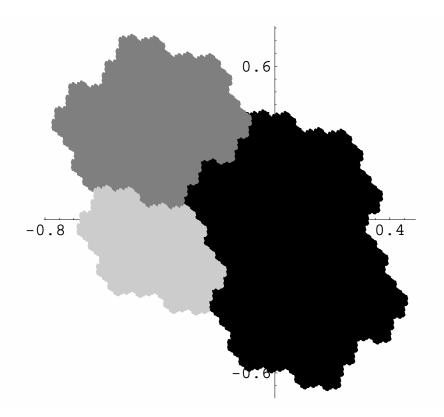
The geodesic lamination





Tribonacci lamination





Dynamical system on the lamination

Let $F: \Lambda \to \Lambda$ defined as let $\gamma \in \Lambda$ with end points a_{γ} and b_{γ} , $F(\gamma)$ is the geodesic that join $f(a_{\gamma})$ with $f(b_{\gamma}^{-})$.

Properties:

- F is well defined.
- F is continuous.
- (Λ, F) is semi-conjugate to (Ω, σ) .
- (Λ, F) is semi-conjugate to $(\widetilde{\Omega}, \sigma)$.

Summary

Theorem 3. Let $\mathbf u$ be an AR sequence and (Ω,σ) , (Ω,σ) their associated $\mathbb N$ and $\mathbb Z$ dynamical systems respectively. Then there exists Λ a geodesic lamination on $\mathbb D^2$ and a continuous dynamical system (Λ,F) such that:

- (Λ, F) is semi-conjugate to (Ω, σ) .
- (Λ, F) is semi-conjugate to $(\widetilde{\Omega}, \sigma)$.
- Λ is invariant under the rotation by 1/2.

The symbolic dynamical system (Ω, σ) is semi-conjugate to (\mathbb{T}^2, T) an irrational translation.

So (Λ, F) is semi-conjugate to (\mathbb{T}^2, T) .

The symbolic dynamical system (Ω, σ) is semi-conjugate to (\mathbb{T}^2, T) an irrational translation.

So (Λ, F) is semi-conjugate to (\mathbb{T}^2, T) .

Let R be the Rauzy fractal.

It has a self-similar structure. It is the fixed point of the IFS $\{f_1, f_2, f_3\}$.

$$f_1(z) = \beta z$$
, $f_2(z) = \beta^2 z + 1$, $f_3(z) = \beta^3 z + \beta + 1$.

The roots of $x^3-x^2-x-1=0$ are λ and β , $\overline{\beta}$, $\lambda>1$, $|\beta|<1$.

The geodesic lamination Λ coincides with the lamination obtained using the self-similar structure (last week talk).

So Λ has a transverse measure μ and an expanding dynamical system $G: \Lambda \to \Lambda$.

$$G_*\mu = \lambda^{s_0}\mu$$
, where $s_0 = \log \nu / \log \lambda$, $\nu^4 - 2\nu - 1 = 0$, $\nu > 1$.

Let $G_i^{-1}:\Lambda\to\Lambda_i$ the inverse branches of G and

$$\Lambda_i = \{ \gamma \in \Lambda : \text{ the end points of } \gamma \in I_i \}$$

So the following diagram commutes:

$$\begin{array}{ccc}
\Lambda & \xrightarrow{F} & \Lambda \\
G_i^{-1} \downarrow & & \downarrow G_i^{-1} \\
\Lambda_i & \xrightarrow{\widetilde{F}} & \Lambda_i
\end{array}$$

where \widetilde{F} is the induced map of F in Λ_i :

$$\widetilde{F}(\gamma) = F^{n_1}(\gamma) : F^{n_1}(\gamma) \in \Lambda_i, F^n(\gamma) \notin \Lambda_i, \text{ if } 1 \leq n < n_1.$$