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Classical Space Filling Curves

Peano (1890, 1908)

Hilbert (1891)

Lebesgue (1904)

Sierpiński (1912)

Schenberg (1938)

Idea: Define F1, . . . , Fk, contractions on the plane, such that there exits a non-empty
compact set K ⊂ R2 such that:

K =
⋃k

j=1
Fj(K) intFi(K) ∩ intFj(K) = ∅.

The digits of the representation of numbers base k, in the interval, are used to know the

order in which apply the maps Fj ’s.
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More recently

Pattern recognition algorithms.

Data structures.

Integral equations.

Rauzy Fractals (Arnoux, S.).
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Iterated Function System (IFS)

Let (X, d) be a complete metric space.

fj : X → X contractions, 1 ≤ j ≤ k.

Let K(X) be the set of all non-empty compact subsets of
X. Its topology is given by the Hausdorff metric.

Let F : K(X) → K(X) defined as F(A) = ∪k
j=1

fj(A).

F is a contraction.

Its fixed point is called the attractor of the IFS: {f1, . . . , fk}.
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Hilbert’s classical space filling curve

Let {H0, H1, H2, H3} be an IFS on R = {x + iy ∈ C | 0 ≤ x, y ≤ 1}, where

H0(z) = zi
2

, H1(z) = z
2

+ i
2
,

H2(z) = z
2

+ 1+i
2

, H3(z) = − zi
2

+ i
2

+ 1.

Let {h0, h1, h2, h3} be an IFS on I = [0, 1], where hk(t) = t/4 + k/4, for 0 ≤ k ≤ 3 This
IFS on the interval defines the numeration system base 4, i.e. t =

∑∞
n=1

an/4n, with
0 ≤ an ≤ 3 if and only if t = limn→∞ ha1

· · ·han
(I).

The space filling curve ξH : I → R is defined as

{ξH (t)} =
∞
⋂

n=1

Ha1
Ha2

· · ·Han
(R),

where t =
∑∞

n=1
an/4n. This map is continuous and surjective.
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Hilbert’s classical space filling curve
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An interesting example

Let {G1, G2, G3, G4} be the IFS on R:

G1(x, y) = (−αx + α,−αy + α), G2(x, y) = (−αy + α, βx + α),

G3(x, y) = (βx + α, αy + α), G4(x, y) = (βy + α,−αx + α)

where α, β > 0, α + β = 1 and α > β.
Properties:

int(Ri) ∩ int(Rj) = ∅ for i 6= j.

∩4

i=1
Ri = {(α, α)}.

Each p ∈ R is of the form ∩∞
n=1

Ga1
· · ·Gan

(R) for some
a1a2 · · · ∈ {1, 2, 3, 4}N

+

. We call the sequence itinerary of
p.
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Let {g1, g2, g3, g4} be the IFS on I defined as:

g1(t) =















α2t + (α2 − α4/2) if 0 ≤ t < α2/2

α2t − α4/2 if α2 ≤ t < 1

y

g2(t) = (β/α)g1(t) + α2 g3(t) = (β/α)2g1(t) + α2 + αβ g4(t) = (β/α)g1(t) + 1 − αβ.

For each t ∈ I there exists a1a2 · · · ∈ {1, 2, 3, 4}N
+

, such that {t} = ∩n≥1ga1
· · · gan

(I).
Let ξ : I → R, be the curve defined as: if t ∈ I and a1a2 · · · its itinerary,

{ξ(t)} =
∞
⋂

n=1

Ga1
Ga2

· · ·Gan
(R).

ξ is continuous, surjective and measure preserving.
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Geodesic Lamination on the disk

Definition 1. A geodesic lamination on D
2 is a non-empty closed set of

geodesics of the disk and that any two of these geodesics do not
intersect except at their end points.
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Geodesic Lamination on the disk

Let D
2 be the closed unit disk in the plane, and S

1 its
boundary.
We think of the IFS: {g1, g2, g3, g4} as acting on S

1.

The construction of the geodesic lamination Λ is as follows:
We consider the extremities of the intervals defined by the
IFS, i.e. tk with k = 1, 2, 3, 4. And we join them by arcs of
circles that meet the boundary of D

2 perpendicularly.
Let a1 . . . an be a word in the alphabet {1, 2, 3, 4}. We join by geodesics the points
ga1

· · · gan
(tk) for k = 1, 2, 3, 4. We do this for all possible words in this alphabet and later

we take the closure in the Hausdorff topology of D2.

The elements of Λ are either geodesics or points in S1.
In the latter case the points are called degenerate geodesics.
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Geodesic Lamination on the disk

Properties of Λ:

Λ is a geodesic lamination.

Λ has an axis of symmetry.

Let λ be an element of Λ with end points b and b′. Then
ξ(b) = ξ(b′).
These properties allow us to define a map Ξ : Λ → R as
follows: Let λ be a geodesic of Λ with end points b, b′. So
Ξ(λ) := ξ(b).
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Geodesic Lamination on the disk
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Transverse Measure to the Lamination

Let δ be any arc in D
2 joining two distinct geodesics of the

lamination. It can be slid along the geodesics towards the
boundary of the disk according the two possible directions in
which the geodesics can be oriented. This procedure gives
rise to a Cantor set in the boundary of the disk, say Cδ.

�� �� �� � � �� �� �� � �

�
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Transverse Measure to the Lamination

Let δ be any arc in D
2 joining two distinct geodesics of the

lamination. It can be slid along the geodesics towards the
boundary of the disk according the two possible directions in
which the geodesics can be oriented. This procedure gives
rise to a Cantor set in the boundary of the disk, say Cδ.

�� �� �� � � �� �� �� � �

�

We define µ(δ) = Ms0
(Cδ) where Ms0

is the s0-Hausdorff measure and s0 is the
Hausdorff dimension of Cδ .

The Hausdorff dimension of Cδ is s0 the solution of α2s + β2s = 1.
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Transverse Measure to the Lamination

Proposition 1. Let δ be any arc transversal to Λ whose end points are
in the geodesics λ1 and λ2. The image of the set Cδ under ξ is the line
segment that joins Ξ(λ1) and Ξ(λ2).

� � � � �
�

�

� � � � �
�

�
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A dynamical system defined on Λ

Let γ be a geodesic with end points a and b.

We define F (γ) as the geodesic that joins f(a) with f(b).

Where f is the expanding map defined by the inverses of
the maps that defined the IFS:

f(t) = g−1

i (t), if t ∈ Ii.

F (γ) ∈ Λ.

F : Λ → Λ is continuous.

F∗µ = (1 + 2(αβ)s0)µ.
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Theorem 1. There exists a geodesic lamination Λ on the disk,
associated to the space filling curve ξ. This lamination has the following
properties:

1. The end points of each element of Λ are mapped to the same point
in the square by the space filling curve ξL.

2. Λ has an axis of symmetry.

3. For any transverse arc to Λ, there is a limit set on the boundary of
the disk, whose Hausdorff dimension is s1, the solution of
α2s + αsβ2s = 1. And, the image of this limit set under ξ is a
straight line between the points, which are the images under ξ of the
end points of the geodesics, joined by the transverse arc.

4. The lamination has a transverse measure µ and there is a
continuous map F : Λ → Λ, so that F∗µ = (1 + 2(αβ)s1)µ.
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Lebesgue version

We have to introduce gaps:
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We have to introduce gaps:
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Lebesgue version

We consider the same IFS {Gi}
4
1=1

in R and on I the IFS
{hi}

4
i=1

.

h1(t) =































α3t + (α2 − α5/2) if 0 ≤ t < α2/2

α3t − α5 if α2 ≤ t < (1 + α2)/2

α3t − α5/2 + α2β if (1 + α)/2 ≤ t < 1

h2(t) = (β/α)h1(t) + α2, h3(t) = (β/α)2h1(t) + α2 + αβ,

h4(t) = (β/α)h1(t) + α2 + αβ + β2.
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The attractor of {h1, · · · , h4} is a Cantor set, C. dimH(C) = s

where s satisfies α3s + 2α2sβs + αsβ2s = 1.

Let t ∈ I and a1a2 · · · be its itinerary.

We define

ξL : C → R

t 7→ ∩n≥1Ga1
· · ·Gan

(R).

This map is continuous, surjective and measure preserving.

Now ξ−1

L (α, α) consists of 8 preimages instead of 4.

With some suitable modifications, we do similar
constructions as before.
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Theorem 2. There exists a geodesic lamination ΛL on the disk,
associated to the modified Lebesgue space filling curve ξL. This
lamination has the following properties:

1. The end points of each element of ΛL are mapped to the same
point in the square by the space filling curve ξL.

2. ΛL has an axis of symmetry.

3. For any transverse arc to ΛL, there is a limit set on the boundary of
the disk, whose Hausdorff dimension is s2, the solution of
α3s + αsβ2s = 1. And, the image of this limit set under ξL is a
straight line between the points, which are the images under ξL of
the end points of the geodesics, joined by the transverse arc.

4. The lamination has a transverse measure µ and there is a
continuous map F : ΛL → ΛL, so that F∗µ = (1 + 2(αβ)s2)µ.
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Lebesgue lamination
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Other laminations
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Other laminations
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General set up

{f1, · · · , fk} IFS on R
d , d ≥ 2

fi(x) = Aix + vi, | det Ai| < 1.

Open set condition.

Let F be the attractor of the IFS and s its Hausdorff
dimension.

Common point condition: ∃y ∈ F such that
f1(y) = · · · = fk(y).

IFS is conformal: ‖fi(x) − fi(x
′)‖ = ci‖x − x′‖.
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General set up

IFS on I = [0, 1]:
Let αi = cs

i = (| det Ai|)
s/d, for 1 ≤ i ≤ k and 0 < β1 < α1.

hi(t) =

{

αit + βi if 0 ≤ t < t∗

αit + βi − αi if t∗ ≤ t < 1

where t∗ = (α1 − β1)/α1 and βi =
∑i

j=1
αj − αit

∗.

The IFS {h1, · · · , hk} satisfies the OSC.

The map ξ : I → F is defined as before.
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Main Theorem

Let be an IFS on R
d such that

It satisfies the open set condition.

Let F be its attractor and s its Hausdorff dimension.

There exists a point y ∈ F such that
f1(y) = f2(y) = · · · = fk(y).

Then there exist a space filling curve ξ : I → F and a
geodesic lamination of Λ on the disk with the following
properties:
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Main Theorem

1. ξ is a measure preserving map between the Lebesgue
measure on I and the s-dimensional Hausdorff
measure of F.

2. If the IFS is conformal then ξ is Hölder continuous with
exponent 1/s.

3. The end points of each element of Λ are mapped to the
same point in the square by the space filling curve ξ.

4. For any transverse arc to Λ, there is a limit set on the
boundary of the disk.

5. The lamination has a transverse measure µ and there is
a continuous map F : Λ → Λ, so that
F∗µ = (as0

1
+ · · · + as0

k )µ, where s0 is the Hausdorff
dimension of a limit on the boundary of the disk
obtained by any transverse arc to Λ.
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Lamination of The Rauzy Fractal
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Other lamination
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Other laminations

The open set condition is not satisfied in these examples.
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Work in progress

Generalization of the previous results for Graph directed
IFS-s.
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