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1. Some recalls / Decision tree
Classification Task

Ω

1

j

m

n

n

n

1

j

m

c

c

c

=

=

=



1Ω

2Ω

4Ω

X
k

11

1

1

j

m

n

n

n

1 1

1

1

/

/

/

j

m

c

c

c

Ω =

Ω =

Ω =

41

4

4

j

m

n

n

n

1 4

4

4

/

/

/

j

m

c

c

c

Ω =

Ω =

Ω =

1: Brings about a partition  on  kX Π Ω

( )1 1 is the quality of the partition  brought about by kXθ Π Π



2; : Bring about a partition   on  k vX X Π Ω

X
k

X
v

( )2θ Π



X
k

X
v

X
t

X
u

X
z

s; , , , : Bring about a partition   on  k v t u zX X X X X Π Ω

sThe size : = 10  πΠ =

( )sθ Π



X
k

X
v

X
t

X
u

X
z

a

b
c

Criterion for Growing the tree
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Entropy measure :
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Each partition  on  is described by a model  : a set of rules
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The largest tree will have the lowest value of  and error E,
Shall we consider the predictive model associated to the
largest tree as the best one ?
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2. Insensitivity of the criterion to the sample size
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The probabilities used for the calculation of the 
criteria are estimated locally by the frequencies 
without taking into account the fact that the 
sample size at each node is decreasing.

In the other hand, we assume that 
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The insensitivity of the criteria to the sample size may lead to different 
assumptions and solutions :

- We don’t need any criteria nor algorithm for growing the tree, develop the largest 
one, we assume that there is a large data set in each node to make the estimates 
of the probabilities reliable ;
- Suppose that the predictive attributes are independent then, we can get a 
reliable estimates of the probabilities at each node by applying Bayes Formula; 
- Start from the largest tree and apply one of the pruning techniques to find the 
right tree ;
- Fix a minimum size in each node before splitting;
- Introduce a penalty parameter for the complexity of the tree (complexity is the 
size of current partition), and allow merging modalities of predictive attributes, 
thus we better control the size of the current partition, we better use the sample;
- Use statistical criteria to stop the growing process at the right deep;

We aim to formulate a new criteria which depends on both the frequencies 
vector and the size of the sample on which the frequencies  are estimated, 
thus we may avoid the over fitting without post treatment nor external 
parameterization.

In all of these cases, the criteria for growing the tree remains
insensitive to the sample size.



3. Entropy measure sensitive to the sample size
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How to fix  λ
τ soft constraint
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4. Lattice to learn from finite data set
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Merging nodes reduces the size of the partition and allows deeper exploration

CHAID (Kass, 1980)
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CART (Breiman et al. 84)
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5. Example
Quality Control of brandy
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If(BU1=[-oo..5.95[) then TYPE=KIRSH with <1.00>
If(BU1=[5.95..+oo[ & BU2=[-oo..37[ & ISOP=[-oo..88.5[ & PRO1=[51..+oo[) then TYPE=Plump with <0.93>
If(BU1=[5.95..+oo[ and ISOP=[88.50..+oo[) Or 

(BU1=[5.95..+oo[ and BU2=[37.00..+oo[ and ISOP=[-oo..88.50[) Or
(BU1=[5.95..+oo[ and BU2=[--oo..37.00[ and ISOP=[-oo..88.50[ and PRO1=[-oo..51.00[ ) then  

TYPE=Pear with <0.80>



6. Conclusion


