Bayesian Analyses for Dyadic Data

Tim Swartz
Dept of Stats/Actsci
Simon Fraser University
Burnaby, BC Canada
Webpage: www.stat.sfu.ca/~tim

Relevant Papers:

- Gill and Swartz (2001), CJS
- Gill and Swartz (2004), JRSSC
- Gill and Swartz (2006), AJMMS

Outline

- Bayesian Computation
- Examples of Dyadic Data
- Round Robin Models
- Directed Graphs Models
- Concluding Remarks

Bayesian Computation

- turn the Bayesian crank

$$\pi(\theta \mid x) \propto f(x \mid \theta) \pi(\theta)$$

- obtain posterior characteristics

$$I(m) = \int m(\theta) \ \pi(\theta \mid x) \ d\theta$$

- for example: $m(\theta) = \theta_i$

Strategies for Bayesian Computation

- (1) asymptotic approximations
- (2) quadrature
- (3) direct simulation from the posterior

$$\hat{I}(m) = \sum_{i=1}^{N} \frac{m(\theta^{(i)})}{N}$$
 where $\theta^{(i)} \sim \pi(\theta \mid x)$

(4) importance sampling

$$\hat{I}(m) = \sum_{i=1}^{N} \frac{m(\theta^{(i)}) \pi(\theta^{(i)} \mid x)}{N w(\theta^{(i)})} \text{ where } \theta^{(i)} \sim w(\theta)$$

(5) Markov chain Monte Carlo (MCMC)

$$\theta^{(1)} \to \theta^{(2)} \to \theta^{(3)} \to \cdots$$
 where $\theta^{(N)} \to \pi(\theta \mid x)$

Typical MCMC Approach

- given $\theta = (\theta_1, \dots, \theta_k)'$, obtain full conditional distributions $[\theta_i \mid \theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_k, X]$

- sample from full conditionals or imbed a Metropolis step

→ considerable programming and smarts required

The Beauty of WinBUGS

- only model specification required
- MCMC done in the background
- its free

Sample WinBUGS Code:

```
for (i in 1:m-1) {for (j in i+1:m) { gamma[i,j] <- gg[i,j,1] gamma[j,i] <- gg[i,j,2] gg[i,j,1:2] \sim dmnorm(zero[1:2],S2[,]) }}
```

Examples of Dyadic Data

- migration between two regions
- influence between journals
- brand switching
- \bullet sports
- social psychology

Who Likes Whom and by How Much?

Round Robin Models

• basic model: Warner, Kenny and Stoto (1979)

$$-y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

$$-y_{jik} = \mu + \alpha_j + \beta_i + \gamma_{ji} + \epsilon_{jik}$$

$$- E(\alpha_i) = E(\beta_j) = E(\gamma_{ij}) = E(\epsilon_{ijk}) = 0$$

$$- Var \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \sigma_{\alpha}^2 & \sigma_{\alpha\beta} \\ \sigma_{\alpha\beta} & \sigma_{\beta}^2 \end{pmatrix}$$

$$- Var \begin{pmatrix} \gamma_{ij} \\ \gamma_{ji} \end{pmatrix} = \begin{pmatrix} \sigma_{\gamma}^2 & \sigma_{\gamma\gamma} \\ \sigma_{\gamma\gamma} & \sigma_{\gamma}^2 \end{pmatrix}$$

$$- Var \begin{pmatrix} \epsilon_{ijk} \\ \epsilon_{jik} \end{pmatrix} = \begin{pmatrix} \sigma_{\epsilon}^2 & \sigma_{\epsilon\epsilon} \\ \sigma_{\epsilon\epsilon} & \sigma_{\epsilon}^2 \end{pmatrix}$$

Bayesian Version of Basic Model

• normal distributions for
$$\mu$$
, $\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}$, $\begin{pmatrix} \gamma_{ij} \\ \gamma_{ji} \end{pmatrix}$, $\begin{pmatrix} \epsilon_{ijk} \\ \epsilon_{jik} \end{pmatrix}$

- diffuse distributions for hyperparameters
- one subjective hyperparameter r_0

$$- E(\sigma_{\alpha}^{2}) = E(\sigma_{\beta}^{2}) \approx E(\sigma_{\gamma}^{2}) \approx E(\sigma_{\epsilon}^{2}) = r_{0}$$

• $m^2 + m + 10$ dimensional posterior distribution

A More Complex Bayesian Model

- interest in the evolution of interpersonal attraction
- Curry and Emerson (1970)
- six 8-person groups with subgroups of roommates
- ratings on 100-point scale in weeks 1,2,4,6,8
- longitudinal model:

$$-y_{gijk} = \mu_k + \alpha_{gik} + \beta_{gjk} + \delta_k \operatorname{room}_{gij} + \epsilon_{gijk}$$
$$-y_{gjik} = \mu_k + \alpha_{gjk} + \beta_{gik} + \delta_k \operatorname{room}_{gij} + \epsilon_{gjik}$$

• normality assumption for the 490 first-order parameters

Some Summary Results

	Week 1		Week 8	
Parameter	Mean	SD	Mean	SD
General mean μ_k	75.0	2.8	78.0	1.4
Roommate effect δ_k	8.9	1.7	8.0	1.3
Actor variance $\sigma_{k\alpha}^2$	88.0	28.0	71.0	20.0
Partner variance $\sigma_{k\beta}^2$	74.0	24.0	86.0	24.0
Actor-partner correlation $\rho_{k\alpha\beta}$	0.5	0.2	0.0	0.2

Directed Graphs Models

- various models
 - $-p_1$ (Holland and Leinhardt, 1981)
 - $-p^*$ (Wasserman and Pattison, 1996)
- various parameterizations

Bayesian Version of the Basic p_1 -Model

- $X_{ij} = 1(0)$ if node *i* relates (does not relate) to node *j*
- $\phi_{ij} = \log \left(\frac{\Pr(X_{ij}=1 \mid X_{ji}=1) \Pr(X_{ij}=0 \mid X_{ji}=0)}{\Pr(X_{ij}=0 \mid X_{ji}=1) \Pr(X_{ij}=1 \mid X_{ji}=0)} \right)$
- $\bullet \ \theta_{ij} = \log \left(\frac{\Pr(X_{ij}=1 \mid X_{ji}=0)}{\Pr(X_{ij}=0 \mid X_{ji}=0)} \right)$
- model

$$-\operatorname{Prob}(\mathbf{X}) \propto \exp\left(\sum_{i < j} \phi_{ij} X_{ij} X_{ji} + \sum_{i \neq j} \theta_{ij} X_{ij}\right)$$
$$-\phi_{ij} = \phi$$
$$-\theta_{ij} = \theta + \alpha_i + \beta_j$$

- normality assumption for ϕ , θ and $\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}$
- diffuse distributions on hyperparameters

Corporate Law Firm Example

- interest in "advice" variable
- Lazega and Pattison (1999)
- 71 lawyers (36 partners and 35 associates)
- $G_{ij} = 1$ if lawyers i and j both partners or both associates
- $\bullet \ \phi_{ij} = \phi + \nu G_{ij}$
- $\theta_{ij} = \theta + \alpha_i + \beta_j + \delta G_{ij}$
- ullet normality assumption for u and δ
- block specific covariance matrices introduced
- multigraphs considered using "co-working" variable

Some Summary Results

Parameter	Mean	SD
σ_{Plpha}^2	0.66	0.21
σ_{Alpha}^2	2.58	1.00
σ^2_{Peta}	1.21	0.39
σ_{Aeta}^{2}	0.66	0.21
$ ho_P$	-0.33	0.18
$ ho_A$	-0.41	0.19
heta	-2.60	0.21
ϕ	1.74	0.26
δ	0.94	0.10
ν	0.02	0.27

Concluding Remarks

- exact inference
- unbalanced designs (i.e. $n_{ij} \neq n$ for all i, j)
- missing data (i.e. $n_{ij} \neq n_{ji}$ for some i, j)
- not restricted to normal data
- introduction of covariates is often straightforward
- computational simplicity via WinBUGS