Tree-based approaches for censored survival data and model selection

Abdissa Negassa, PhD
Albert Einstein College of Medicine
Of Yeshiva University

OUTLINE OF PRESENTATION

- 1. Introduction
- 2. Prognostic Classification
- 3. Previous work
- 4. Methods
- 5. Results
 - i) Simulation
 - ii) Real data set
- 6 Subgroup Analysis

PROGNOSTIC CLASSIFICATION

PROBLEM:

GIVEN:

DATA = { t_i , δ_i , Z_i }

Where t is a time random variable (time to the event of interest), δ a censoring indicator, Z a vector of covariates.

FIND:

A classification of individuals with classes homogeneous and distinct with respect to survival experience, described by a tree

Gordon and Olshen (1985)

- Wasserstein distance

Davis and Anderson (1988)

- Likelihood Ratio Statistic (LRS)

Ciampi et al (1987, 1992, 1995)

- Log-rank statistic, Partial LRS

Segal (1988)

Log-rank statistic

Ahn and Loh (1994)

- Patterns of Cox-residuals; two-sample t test

LeBlanc and Crowley (1992, 1993)

- Full likelihood, Log-rank statistic

RECPAM TREE CONSTRUCTION STEPS

Step 1. Build a binary tree

- a) Split function: partial Likelihood Ratio Statistic (LRS)
- b) examine every allowable split on the basis of simple statement on z
- Step 2. Determine the right size tree
 - a) prune the large tree: construct a sequence of nested rooted subtrees based on *Information Weight*
 - b) choose the "honest tree"

Step 3. Amalgamate successively the leaves of

INFORMATION MEASURES WITHIN RECPAM

1) Information Content (IC) at a node

LRS comparing the models

$$h_1(t; Q(z)) = \exp \{ \gamma Q(z) \} h_0(t)$$

and

$$h_1(t; Q(z)) = h_0(t)$$

2) Information Weight (IW) of an internal node g

Information Loss (IL) of a subtree T - Tg with respect to the large tree T:

Illustration of the elbow rule using maximal split statistic and information loss

ASSESSMENT OF PERFORMANCE

1. Percent recovery of the correct structure

2. Optimism (following the outline of Efron 1983)

$$op = I\hat{C}(T_{\text{max}}) - IC(T_{\text{true}}) \text{ with } E_F(op) = \omega_{\text{max}}$$
$$o\hat{p} = I\hat{C}(T_{\text{max}}) - I\hat{C}(T_{\text{sel}}) \text{ with } E_F(o\hat{p}_{\text{sel}}) = \hat{\omega}_{\text{sel}}$$

$$bias = \hat{\omega}_{sel} - \omega_{max}$$

$$MSE = E_F(I\hat{C}(T_{sel})) - IC(T_{true}))^2$$

$$REL = \frac{MSE - MSE^{ic}}{MSE^{zero} - MSE^{ic}}$$

Where: $MSE^{zero} = MSE$ of $I\hat{C}(T_{max})$

 $MSE^{ic} = MSE$ of the "ideal constant" estimator, $I\hat{C}(T_{\text{max}}) - \omega_{\text{ma}}$

a calcation oritorian with the smallest PEL is expected

SIMULATION

- 4 scenarios (0% & 50% censoring and presence / absence of underlying structure)

150 replications from each scenario with n=300

survival and censoring times are generated from the

Figure 2. Split function

selection: Prognostic Classification (The true structure has five terminal leaves and 0%

Bias, standard deviation and relative inefficiency by method of model selection: Prognostic Classification

with structure

Method	Bias	$SD(o\hat{p}_{sel})$	REL
0% censoring			
CV	0.73	10.77	0.38
Elbow	-0.28	11.33	0.30
Min. AIC	-13.23	3.85	0.57
1SE rule	23.55	12.76	1.89
50% censoring			
CV	-5.23	9.31	0.38
Elbow	-7.48	6.64	0.21
Min. AIC	-18.54	3.30	0.74
1SE rule	11.14	11.23	0.45

Figure 4. Number of terminal leaves by method of tree selection: Prognostic Classification
(No structure and 0% censoring in the data set)

of model selection: Prognostic Classification

without structure

Method	Bias	$SD(o\hat{p}_{sel})$	REL
0% censoring			
CV	-1.67	6.88	-0.04
Elbow	-5.49	6.14	80.0
Min. AIC	-18.06	3.67	0.67
1SE rule	-0.35	6.35	-0.07
50% censoring			
CV	-2.66	6.05	0.01
Elbow	-4.99	5.12	80.0
Min. AIC	-15.52	3.43	0.65
1SE rule	-0.31	6.08	-0.08

of model selection: Prognostic Classification with structure

Method	Bias	$SD(o\hat{p}_{sel})$	REL
	0% censoring		
Elbow	-0.28	11.30	0.30
Two-stage with CV	-0.28	11.30	0.30
Two-stage with 1SE	-0.28	11.30	0.30
	50% censoring		
Elbow	-7.47	6.64	0.21
Two-stage with CV	-7.47	6.64	0.21
Two-stage	-6.68	8.84	0.30

Bias, standard deviation and relative inefficiency by method of model selection: Prognostic Classification without structure

Method	Bias	$SD(o\hat{p}_{set})$	REL
	0% censoring		
Elbow	-5.49	6.14	0.08
Two-stage with CV	-1.56	7.02	-0.03
Two-stage with 1SE	-0.65	6.73	-0.05
	50% censoring		
Elbow	-4.99	5.12	0.08
Two-stage with CV	-2.42	5.94	0.01
Two-stage	-0.24	6.07	-0.08

Acute Lymphopiastic Leukemia (ALL) Data Set

N=2725

Median follow-up time was 2017 days

66.1% censoring

Eighteen covariates

Event Free Survival = number of days from study entry to the first *major* study event or time to last follow-up.

- Failure to achieve remission in the initial treatment phase, i.e., induction therapy phase
- Death during induction without achieving remission
- Relapse after achieving remission
- Death during remission

Figure 5

Prognostic Classification for ALL

Cox regression coefficient (SE)

Davies 4000F 00

Figure 6
Prognostic Classification for ALL

Figure 7 Prognostic Classification for ALL Data Set

anadianh viinilais

Subgroup analysis refers to analysis that is aimed at uncovering possible variation in treatment effect in different patient subgroups such as male/female, young/old, with distinct molecular profile etc.

The question to be answered by this type of analysis is -- for whom does treatment work best?

It is reasonable to perform subgroup analysis in clinical trials *only* after the main comparison is shown to be significant (Bulpitt, 1988).

Possibility of clinically significant effects within subgroups leading to overall null effect (Gail and Simon, 1985)

 Such a scenario is very unlikely in clinical trials (Yusuf et al. 1991)

Veteran Administration Lung Cancer Data Set

N=137

Six covariates: Performance status, disease duration, age, prior therapy, cell type, treatment (standard vs test)

Median follow-up time was 80 days

6.6% censoring

Employing Cox proportional hazards model, treatment didn't reach statistical significance after adjusting for the other covariates

Subgroup Analysis for Lung Cancer

^{*} Cox regression coefficient for treatment effect(SE) Deviance = 536.864

factors that did not appear in the subgroup treestructure

Leaf	\hat{eta} (SE)	$H \hat{R}$	95% CI
1	0.97(0.62)	2.64	(0.79, 8.83)
2	0.41(0.26)	1.51	(0.91, 2.52)
3	-0.84(0.73)	0.43	(0.10, 1.79)