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Thanks to Tim Swartz for laying out Bayesian basics.

This is going to be a fully Bayesian approach to
a model built up of many tree models.

We are going to do:

f(8]y,x) oc T(y | x,0)1(6)

where 0 is going to include many tree models.

We have to specify the prior and compute the posterior.



First we need some notation for a single tree model.
We have to be able to think of a tree model as
a "parameter”.

Let T denote the tree structure
Including the decision rules.

At bottom node | we have L <C c>=C
a parameter .

Let, M:{Hl’HZ""’Hb} _7

denote the set of u's.
5 < / \ >=(

a(x,T,M) is then the u
associated with an x. B = =93

Given x, and the parameter value (T,M), g(x,T,M) is our prediction fory.



Let {T;,M;} be a set of tree models.

Our model is:

y =9g(x,T;,;M;) + g(x,T,,M,) + ... + g(x,T,,,M,) + 0z, z~N(0,1)

m=hundreds ! (eg. 200)

9 - ((Tl’Ml)""'(Tm’Mm)1G)

hundreds of parameters:
only one of which is identified (o)
"possibly way too many" - "over complete basis"

this model seems silly, and it is, if you don't use a lot of prior information !!



Motivated by "boosting":

overall fit is the sum of many "weak learners"

Prior is key !! :

Prior info: each tree not too big, each n not too big,
o could be small

Bayesian Nonparametrics:

Lots of parameters (to make model flexible)
and lots of prior to shrink towards simple structure
(regularize).



Note:

Basic "model space" intuition:
shrinks towards additive models with some interaction.

We'll sketch the MCMC and then lay out the prior.



Sketch the MCMC

y =9(X,T;,M,xX) + g(x,T,,M,) + ... + g(x,T,,M_) + 6 Z

The "parameter” is {T}, {M}, .
"simple" gibbs sampler:

D o[{T},{M},data
2 (T,M)[{T:}.,,{M;},,; 0.data (bayesian backiitting)

(1) subtract all the g's from y and you have a simple problem
(2) subtract all but the ji" g from y



The draw
(Tj’Mj) | {T| }iiji{Mi}i;tj;G;data

IS done as
p(T.M) = p(T) p(M|T)
that is, we first margin out M and draw T, then draw M given T.

M|T is easy, just a bunch of normal mean problems
(and we will use the conjugate prior).



T is drawn using the Metropolis-Hastings algorithm.

Given the current T, we propose a modification and
then either move to the proposal or repeat the old tree.

In particular we have proposals that change the size of the tree:
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More complicated models will be accepted if the data's insistence
overcomes the reluctance of the prior.



y =9(x,T;,;M) + g(x,T,,M,) + ... + g(x,T,,,M,)) + 0z, z~N(0,1)

So, at each iteration, each T, each M and o is updated.

This is a Markov chain such that the stationary distribution
IS the posterior.

As we run the chain, it IS common to observe that an

Individual tree grows quite large and then collapses back
to a single node!!

Each tree contributes a small part to the fit, and the fit
IS swapped around from tree to tree as the chain runs.



Simulated example:
y =10sin(nx,X,) +20(X, —.5)* + 10X, + 5X, +0X, +--0X,, + 6Z

used by Friedman, n=100, ¢ = 1.
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The Prior

Make everything you can independent.
But prior on M must be conditional on the corresponding
T because the dimension is the number of bottom nodes.

PHTI- -'u-l:'- l:T-z- -'Hijl- N {'E;.;,_, -'1'{:%;1: Gr:'
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Since the dimension of each M; depends on the corresponding T this conditional

structure is essential. We simplify further by imposing independence whenever

possible:
p(Th. 1o, ... Tn) = [] p(T5), (6)
p(My, Ma, ..., Mw |T1, Ts, ..., Tw) =[] p(M; | T}), (T)
p(M; | T5) = ] (s | T5), (8)

So just choose p(T), p(c), and p(u|T)=p(p)



p(T)

Not obvious. We specify a process that grows trees.

Marginal prior on

number of
bottom nodes. .
e
Put prior weight ]
on small trees!! I
i1 | | ..

There are parameters associated with this prior
but we have not played with them at all in BART.
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pP(u|T)

First we standardize y so that with high probability
E(Y|x) is in the interval [-.5,.5].

choose: p~N(0,c7)

In our model, E(Y|x) is the sum of m indepedent u's (a priori).

So the prior standard deviation of E(Y|X) Is ﬁgu

let  kimo,=5=0, =—>

kvm

k is the number of standard deviations from the mean of O
to the interval boundary of .5

This is a knob. Our default is k=2.



p(o)
First choose "rough estimate” g  (léastsquares estimate,
just choose it)
2 VA
2

Ly

Let &

and choose v and then a quantile to put the rought estimate at
(this determines 1)

c=2

sd(y),

=== consenative: di=10, quanlile=75
_ — defaull dt=3, quantiiz=3
o Aggressive: 47=3, guantile= 29

Here are the three

priors we have been
using: @ -

5igma



Prior summary:
We have fixed the prior on T.
For m, just have k. Default is 2, might try 3.

Three priors for o, given rough estimate.

Not to many knobs and there are simple default recommendations!!

Have to standardize y and x's, but standardization of x
not is sensitive an issue as in say neural nets.

Claim: it Is easy to use.

In practice, we do use the data to pick the prior, but you could
easily just choose |it.



Note:

At iteration | we have a draw from the posterior of the function

fi(') — g(‘1TJj1MJj)+g("TZi’Mzi)+"'+ g(‘:T

m

i’Mmi)
Think of f as a "parameter" and we are drawing from its posterior.
To get in-sample fits we average f.(X) for an x in-sample.

Similarly, we can get out-of-sample fits for out-of-sample x's.

Posterior uncertainty about f(x) is captured by the set of draws f(x).

Combines boosting "ensemble learning” with
Bayesian model averaging.



Friedman Simulated Example
y =10sin(nx,X,)+20(X, —.5)* +10x, +5X, +0X, +---0X,, + ¢
10 x's, only first 5 matter.

Compare with other fitting techniques
(Neural nets,Random forests, boosting, MARS, linear regression)

- 50 simulation of 100 observations
- 10 fold cross validation used to pick tuning parameters,
then refit will all 100

Performance measured by:

1 1000 , where x's are 1000
RMSE = 1000 le (F(x) = 1(x;)) out of sample draws



10 fold cross validation
IS used to pick tuning
parameters.

BART-cv uses
cv to choose prior
setting

BART-default
just goes with a
single prior choice

Method average RMSE  se(RMSE)
Random Forests 2.655 0.025
Linear Regression 2.618 0.016
Neural Nets 2.156 0.025
Boosting 2.013 0.024
MARS 2.003 0L OG0
BART-cv 1.787 0.021
BART-default 1.759 0.019



Took Friedman
example and added
more useless x's

Fit BART with
1000 x's

and only

100 observations
and got

"reasonable"

results 1!
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Things | like about BART:

Competitive out of sample performance
(mcmc stochastic search (birth and death), boosting, model averaging)

Simplicity of underlying tree model leads to simple prior.
(have used same prior with 1 x as with 1,000!)

Easy to use! (again, because of prior, have R package)

Stable, run twice get same thing
Converges quickly
Mixes reasonably well.
(intuition, as you run it, individual trees grow
and then shrink back to nothing)

Posterior uncertainty (relative to other "data mining" tools).



Hockey Example (with Jason Abrevaya)

Abrevaya and McCulloch, “Reversal of Fortune”

Theory:
NHL hockey is impossible to officiate (fast, tradition of violence)

Hence, refs will make calls even out.

Ken Hitchcock:
"there could probably be a penalty called on every NHL shift"

Glen Healy:

"Referees are predictable.The flames have had three penalties,
| guarantee you the oilers will have three."



Table 1: Distribution of Penalty Types

Penalty Type Frequency
Roughing 15.93%
Holding 12.04%
If ref calls too many penalties: Hooking 11.20%
Fighting 10.99%
Interference 10.18%
“Let the players play!!” Tripping 8.69%
High sticking 7.72%
Slashing 6.85%;
Cross checking 4.96%;
If he Ca”S too feW Unsportsmanlike conduct 2.45%
Elbowing 2.07T%
“ " Boarding 1.91%
Hey ref, get control of the game Too many men on ice 1.20%
Goalie interference 1.17%
Charging 1.03%
Delay of game 0.72%
Diving 0.17%
Spearing 0.10%
Board Check 0.10%;
Butt ending 0.01%;

Attempt to injure 0.01%;




Have data on every penalty called in the
NHL from 1995 to 2001.
57,883 observations.

y = 0 iIf pen on same team as last time, 1 else

y =.589

59% of the time, the call reverses.



Table 5: Variable Descriptions

Variable Description Mean Min Max
Dependent variable

revecall 1 if current penalty and last penalty are on different teams 0.589 U] 1
Indicator- Variable Covariates

ppgoal 1 if last penalty resulted in a power-play goal 0.157 1} 1
home 1 if last penalty was called on the home team 0483 0 1
inrow2 1 if last two penalties called on the same team 0.354 0 1
inrowd 1 if last three penalties called on the same team 0.107 ] 1
inrowd 1 if last four penalties called on the same team 0.027 ] 1
tworef 1 if game is officiated by two referees 0.414 1] 1
Categorical-variable covariale

Season Season that pame is played (e.g., 1995 for 95-6 season) 1995 2001
COther covariates

timeingame  Time in the game (in minutes) 31.44  0.43  59.98
dayofseason Number of days since season began 95.95 1 201
numpen Number of penalties called so far {in the game) 5.76 2 21
timebetpens Time (in minutes) since the last penalty call 596 0,02 55.13
goaldiff Goals for last penalized team minus goals for opponent 002 -10 10
gfl Goals/game scored by the last team penalized 278 LB 440
gal Goals/game allowed by the last team penalized 275 198 444
pfl Penalties /game committed by the last team penalized 6.01 411 8437
pal Penalties /game by opponents of the last team penalized 597 433 825
gf2 Goals/game scored by other team (not just penalized) 278 LBd 440
ga2 Goals/game allowed by other team 278 198 444
pf2 Penalties/game committed by other team 596 411 84T
pa2 Penalties/game by opponents of other team 508 433 825

There are a lot of descriptive statistics in the paper.



Goal of the study:

Which variables have an "important effect " on y?
(In particular the "inrows")

Fit BART.

y=p(x) +e
Again outperformed competitors.

How can we explore the BART fit to see what it has to tell us ?



We picked a subset of 4 factors and did a 2”4 experiment.
All the other variables are set at a base setting.

Table 7: Description of Seenario Design

Quantity Code Meaning Code Meaning
goal differential q goaldiff = —1 C.‘ goaldiff =1

(last penalized team behind by a goal) | (last penalized team ahead by a goal)
consecutive calls r inrow2 =0 R inrow2 =1

(last two ealls on different teams) {last two calls on same teamn)
time between penalties | timebetpens = 2 T timebetpens = 7

(short time since last penalty) {long time since last penalty)
time in the game n timeingame = 10, N timeingame = 55,

numpens = 3 numpens = 12

(early in the game)

(late in the game)

So, gRtn, means:

g: the last penalized team down by 1
R: last two calls on same team

t: not long since last call
n: early in the game



We have 16 possible
X configurations.

Report the posterior
of p(x) at each x,
where p is the random
variable.

Huge amount of
“significant” fit.

Interaction.
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Figure 11: BART inference for interaction scenarios, differences.

posterior of
differences
from previous slide

Posterior of

P(x,R)-p(x.r)
at 8 possible x.

Other three plots are
for the other three
factors.



Google Robert McCulloch

R instructions for Linux and Windows
(soon on CRAN)

I'll put up a "main" to run outside of R.



