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Thanks to Tim Swartz for laying out Bayesian basics.

This is going to be a fully Bayesian approach to 
a model built up of many tree models.

We are going to do:

f( | y,x) f(y | x, )f( )θ ∝ θ θ

where θ is going to include many tree models.

We have to specify the prior and compute the posterior.



First we need some notation for a single tree model.
We have to be able to think of a tree model as
a "parameter".

x2 < d x2 >= d

x5 < c x5 >= c

µ3 = 7

µ1 = -2 µ2 = 5

Let T denote the tree structure
including the decision rules.

At bottom node i we have
a parameter µi.

Let, { }1 2 bM , , ,= µ µ µ…

denote the set of µ's.

g(x,T,M) is then the µ
associated with an x.

Given x, and the parameter value (T,M), g(x,T,M) is our prediction for y.



Let {Tj,Mj} be a set of tree models.

Our model is:

y = g(x,T1,M1) + g(x,T2,M2) + ... + g(x,Tm,Mm) + σ z, z~N(0,1)

m=hundreds !!!  (eg. 200 )

θ = ((T1,M1),....(Tm,Mm),σ)

hundreds of parameters:
only one of which is identified (σ)
"possibly way too many" - "over complete basis"

this model seems silly, and it is, if you don't use a lot of prior information !!



Motivated by "boosting":

overall fit is the sum of many "weak learners"

Prior is key !! :

Prior info: each tree not too big, each µ not too big,
σ could be small

Bayesian Nonparametrics:

Lots of parameters (to make model flexible)
and lots of prior to shrink towards simple structure

(regularize).



Note:

Basic "model space" intuition: 
shrinks towards additive models with some interaction.

We'll sketch the MCMC and then lay out the prior.



Sketch the MCMC

The "parameter" is  {Tj}, {Mj}, σ.

"simple" gibbs sampler:

j j

j j i i j i i j

| {T },{M },data

(T ,M ) | {T } ,{M } , ,data≠ ≠

σ

σ

y = g(x,T1,M1,x) + g(x,T2,M2) + ... + g(x,Tm,Mm) + σ z

(1)

(2)

(1) subtract all the g's from y and you have a simple problem
(2) subtract all but the jth g from y

(bayesian backfitting)



j j i i j i i j(T ,M ) | {T } ,{M } , ,data≠ ≠ σ

The draw 

is done as

p(T,M) = p(T) p(M|T)

that is, we first margin out M and draw T, then draw M given T.

M|T is easy, just a bunch of normal mean problems
(and we will use the conjugate prior).



T is drawn using the Metropolis-Hastings  algorithm.

Given the current T, we propose a modification and
then either move to the proposal or repeat the old tree.

In particular we have proposals that change the size of the tree:

=>
?

=>
?

propose a more complex tree

propose a simpler tree

More complicated models will be accepted if the data's insistence
overcomes the reluctance of the prior.



y = g(x,T1,M1) + g(x,T2,M2) + ... + g(x,Tm,Mm) + σ z, z~N(0,1)

So, at each iteration, each T, each M and σ is updated.

This is a Markov chain such that the stationary distribution
is the posterior.

As we run the chain, it is common to observe that an
individual tree grows quite large and then collapses back
to a single node!!

Each tree contributes a small part to the fit, and the fit
is swapped around from tree to tree as the chain runs.



2
1 2 3 4 5 6 10y 10sin( x x ) 20(x .5) 10x 5x 0x 0x Z= π + − + + + + + σ"

Simulated example:

used by Friedman, n=100, σ = 1.

Blue is draws of σ
with 200 trees.

Draws quickly burn-in
and then vary about the
true value.

Red is with m=1.



Make everything you can independent.
But prior on M must be conditional on the corresponding
T because the dimension is the number of bottom nodes.

So just choose p(T), p(σ), and p(µ|T)=p(µ)

The Prior
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00Marginal prior on
number of
bottom nodes.

Put prior weight
on small trees!!

Not obvious.  We specify a process that grows trees.

There are parameters associated with this prior
but we have not played with them at all in BART.

p(T)



p(µ|T)

First we standardize y so that with high probability
E(Y|x) is in the interval [-.5,.5].

In our model, E(Y|x) is the sum of m indepedent µ's (a priori).

So the prior standard deviation of E(Y|x) is  m µσ

2~ N(0, )µµ σchoose:

Let .5k m .5
k mµ µσ = ⇒ σ =

k is the number of standard deviations from the mean of 0
to the interval boundary of .5

This is a knob.  Our default is k=2.



p(σ)

First choose "rough estimate" σ̂

2
2~
ν

νλ
σ

χ
Let

and choose ν and then a quantile to put the rought estimate at
(this determines λ)

Here are the three
priors we have been
using:

ˆ 2σ =

(least squares estimate, sd(y),
just choose it)



Prior summary:

We have fixed the prior on T.

For m, just have k.  Default is 2, might try 3.

Three priors for σ, given rough estimate.

Not to many knobs and there are simple default recommendations!!

Have to standardize y and x's, but standardization of x
not is sensitive an issue as in say neural nets.

Claim: it is easy to use.

In practice, we do use the data to pick the prior, but you could
easily just choose it.



Combines boosting "ensemble learning" with 
Bayesian model averaging.

At iteration i we have a draw from the posterior of the function

i 1i 1i 2i 2i mi mif ( ) g( ,T ,M ) g( ,T ,M ) g( ,T ,M )= + + +i i i " i

To get in-sample fits we average if (x) for an x in-sample.

Similarly, we can get out-of-sample fits for out-of-sample x's.

Posterior uncertainty about f(x) is captured by the set of draws fi(x).

Think of f as a "parameter" and we are drawing from its posterior.

Note:



Friedman Simulated Example

2
1 2 3 4 5 6 10y 10sin( x x ) 20(x .5) 10x 5x 0x 0x= π + − + + + + + ε"

10 x's, only first 5 matter.

Compare with other fitting techniques 
(Neural nets,Random forests, boosting, MARS, linear regression)

- 50 simulation of 100 observations
- 10 fold cross validation used to pick tuning parameters, 

then refit will all 100

Performance measured by:

1000
2

i i
i 1

1 ˆRMSE (f(x ) f(x ))
1000 =

= −∑
where x's are 1000
out of sample draws



10 fold cross validation
is used to pick tuning 
parameters.

BART-cv uses 
cv to choose prior 
setting

BART-default
just goes with a
single prior choice

have lots of examples where BART does great out of sample !!!!!!!



Fit BART with
1000 x's
and only
100 observations
and got 

"reasonable"

results !!!!

Took Friedman
example and added
more useless x's

f(x) vs 
posterior interval
(in sample)

f(x) vs 
posterior interval
(out of sample)

draws of σ

f(x)

f̂(x) ±

20 x's

100 x's

1000 x's

ˆ sd(y)σ =



Things I like about BART:

Competitive out of sample performance
(mcmc stochastic search (birth and death), boosting, model averaging)

Simplicity of underlying tree model leads to simple prior.
(have used same prior with 1 x as with 1,000!)

Easy to use! (again, because of prior, have R package)

Stable, run twice get same thing
Converges quickly
Mixes reasonably well.

(intuition, as you run it, individual trees grow
and then shrink back to nothing)

Posterior uncertainty (relative to other "data mining" tools).



Hockey Example

Theory:

NHL hockey is impossible to officiate (fast, tradition of violence)
Hence, refs will make calls even out.

Abrevaya and McCulloch, “Reversal of Fortune”

Ken Hitchcock:
"there could probably be a penalty called on every NHL shift"

"Referees are predictable.The flames have had three penalties,
I guarantee you the oilers will have three."

Glen Healy:

(with Jason Abrevaya)



“Let the players play!!”

If ref calls too many penalties:

“Hey ref, get control of the game"

If he calls too few:



Have data on every penalty called in the 
NHL from 1995 to 2001.
57,883 observations.

y = 0 if pen on same team as last time, 1 else

59% of the time, the call reverses.

589y .=



There are a lot of descriptive statistics in the paper.



Goal of the study:

Which variables have an "important effect " on y?
(In particular the "inrows")

How can we explore the BART fit to see what it has to tell us ?

Fit BART.
y = p(x) + ε
Again outperformed competitors.



We picked a subset of 4 factors and did a 2^4 experiment.
All the other variables are set at a base setting.

So, gRtn, means:

g: the last penalized team down by 1
R: last two calls on same team
t: not long since last call
n: early in the game



r-R

Huge amount of
“significant” fit.

Interaction.

mean

95%

5%

We have 16 possible
x configurations.

Report the posterior
of  p(x) at each x,
where p is the random
variable.

last penalized team:
down by a goal
had last two pens, not long ago
early in the game



posterior of 
differences
from previous slide

p(x,R)-p(x,r)

Posterior of

at 8 possible x.

Other three plots are
for the other three
factors.



Google Robert McCulloch

R instructions for Linux and Windows
(soon on CRAN)

I'll put up a "main" to run outside of R.


