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The bane of regression modeling

Numerous regression methods exist

Many have good prediction accuracy

Few yield interpretable models

Very few (none?) are both accurate and interpretable

Classical multiple linear regression model may be accurate
— but it is often harder to interpret than might be expected
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1970 Boston housing data

Var. Definition Var. Definition
TOWN township (92 values) ID census tract number
MEDV median value in $1000 AGE % built before 1940
CRIM per capita crime rate DIS dist. employ. centers

ZN % land zoned for lots RAD access. to radial hwys
INDUS % nonretail business TAX property tax rate/$10K
CHAS 1 on river, 0 else PT pupil/teacher ratio

NOX nitrogen oxide (p.p. 109) B (% black - 63)2/10
LSTAT % lower-status pop. RM ave. number of rooms

Data: 506 observations (census tracts) in greater Boston

Goal: Examine the impact of air pollution on house price

Sources: Harrison & Rubinfeld (1978); Belsley, Kuh & Welsch
(1980)
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Harrison & Rubinfeld linear model for log(MEDV)

Variable Coef t-stat Variable Coef t-stat
4.6 30.0 AGE 7.1E-5 0.1

CRIM -1.2E-2 -9.6 log(DIS) -2.0E-1 -6.0
ZN 9.2E-5 0.2 log(RAD) 9.0E-2 4.7
TAX -4.2E-4 -3.5 INDUS 1.8E-4 0.1
CHAS 9.2E-2 2.8 PT -3.0E-2 -6.0
NOX2 -6.4E-1 -5.7 B 3.6E-4 3.6
RM2 6.3E-3 4.8 log(LSTAT) -3.7E-1 -15.2
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log(MEDV) vs. log(DIS)
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Harrison & Rubinfeld linear model for log(MEDV)

X β t ρ X β t ρ

4.6 30.0 AGE 7.1E-5 0.1 -0.5
CRIM -1.2E-2 -9.6 -0.5 log(DIS)* -2.0E-1 -6.0 0.4
ZN 9.2E-5 0.2 0.4 log(RAD)* 9.0E-2 4.7 -0.4
TAX -4.2E-4 -3.5 -0.6 INDUS 1.8E-4 0.1 -0.5
CHAS 9.2E-2 2.8 0.2 PT -3.0E-2 -6.0 -0.5
NOX2 -6.4E-1 -5.7 -0.5 B 3.6E-4 3.6 0.4
RM2 6.3E-3 4.8 0.6 log(LSTAT) -3.7E-1 -15.2 -0.8

β = coefficient, t = t-statistic, ρ = corr(X , Y )
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Which sign is right?

Coefficient from a multiple linear (ML) model is more trustworthy
than that from a simple linear model because it adjusts for the
effects of the other predictors
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Which sign is right?

Coefficient from a multiple linear (ML) model is more trustworthy
than that from a simple linear model because it adjusts for the
effects of the other predictors

But the coefficient from the ML model depends on the form and
number of the other predictors in the model
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Which sign is right?

Coefficient from a multiple linear (ML) model is more trustworthy
than that from a simple linear model because it adjusts for the
effects of the other predictors

But the coefficient from the ML model depends on the form and
number of the other predictors in the model

If the ML model is wrong, the signs of its coefficients may be
wrong too
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How to avoid contradictory signs?

Overly simplistic solution
Choose one predictor variable and use simple linear regression
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How to avoid contradictory signs?

Overly simplistic solution
Choose one predictor variable and use simple linear regression

Practical solution
Partition the data until at most one or two predictors affect the
response in each partition

Fit a one- or two-predictor model to each partition

Partitioning has the effect of conditioning on the other predictors
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How to avoid contradictory signs?

Overly simplistic solution
Choose one predictor variable and use simple linear regression

Practical solution
Partition the data until at most one or two predictors affect the
response in each partition

Fit a one- or two-predictor model to each partition

Partitioning has the effect of conditioning on the other predictors

Why will two predictors not cause problems?
Because interpretation need not depend on the coefficients
— model and data can be visualized graphically
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How to partition?
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How to partition?

GUIDE — Loh (2002) Statistica Sinica, 12, 361–386
Recursively, at each step:

1 Fit the best simple or two-predictor linear model to the data
2 Use residuals to choose the most nonlinear predictor
3 Partition the data with the chosen predictor variable

Wei-Yin Loh (UW Madison) Regression Models You Can See 10 / 39



GUIDE split variable selection
by chi-square analysis of residual patterns

1 Divide observations into two classes by signs of their residuals
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GUIDE split variable selection
by chi-square analysis of residual patterns

1 Divide observations into two classes by signs of their residuals
2 Curvature tests

1 Discretize each continuous predictor and cross-classify against
residual signs

2 Find the p-value of each chi-square test
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GUIDE split variable selection
by chi-square analysis of residual patterns

1 Divide observations into two classes by signs of their residuals
2 Curvature tests

1 Discretize each continuous predictor and cross-classify against
residual signs

2 Find the p-value of each chi-square test
3 Pairwise interaction tests

1 Divide the 2D-space of each pair of predictor variables into groups
2 Find the p-value of each chi-square test of residual signs vs. groups
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GUIDE split variable selection
by chi-square analysis of residual patterns

1 Divide observations into two classes by signs of their residuals
2 Curvature tests

1 Discretize each continuous predictor and cross-classify against
residual signs

2 Find the p-value of each chi-square test
3 Pairwise interaction tests

1 Divide the 2D-space of each pair of predictor variables into groups
2 Find the p-value of each chi-square test of residual signs vs. groups

4 Split node with variable having the smallest p-value
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Curvature test
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When to stop partitioning?

Stop only when data get too thin

Partitioning generates a binary tree structure which in turn yields a
nested sequence of piecewise linear models

Select a piecewise model from the sequence by estimating the
prediction error of each with cross-validation or an independent
test sample
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Advantages of GUIDE approach

Why use residuals to choose split variables?
Unbiasedness in variable selection

Savings in computation time

Extensibility to robust, quantile, Poisson, relative risk, etc.,
regression

Why one- and two-predictor models?
Data and model can be visualized with 2D and 3D plots

Model can be interpreted unambiguously

Least squares or robust?
Robust fits are more resistant to outliers

But robust fits may be less efficient
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GUIDE robust regression model for log(MEDV)
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Data and fits in terminal nodes
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Resolving the conflict in the signs of log(DIS)
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Resolving the conflict in the signs of log(DIS)

Strategy
1 Remove effects of other predictors by conditioning on them
2 Regress on log(DIS)
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Resolving the conflict in the signs of log(DIS)

Strategy
1 Remove effects of other predictors by conditioning on them
2 Regress on log(DIS)

Procedure
Make log(DIS) the only linear predictor

Use all other predictors for splitting

Let GUIDE construct the tree
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Resolving the conflict in the signs of log(DIS)

Strategy
1 Remove effects of other predictors by conditioning on them
2 Regress on log(DIS)

Procedure
Make log(DIS) the only linear predictor

Use all other predictors for splitting

Let GUIDE construct the tree

Advantage
No need to find a global model for log(MEDV)
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GUIDE model with log(DIS) as sole linear predictor
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Data and fits in GUIDE model
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The real question: what is the effect of NOX?
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Effect of NOX after partitioning by GUIDE
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Application to outlier detection — vehicle crash tests

National Highway Transportation Safety Administration (NHTSA)
has been crash-testing vehicles since 1972

1,789 vehicles tested as of 2004

One variable is head injury criterion (hic)

0 ≤
√
hic < 100

Threshold for severe head injury is
√
hic = 30

Twenty-five predictor variables give information on the vehicles,
dummies, and test conditions

Our goal
Identify the vehicle models that are exceptionally unsafe (outliers) after
controlling for the other variables
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Boxplot and histogram for
√
hic (driver data)
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NHTSA variables (#distinct values in parentheses)

Name Description Name Description
hic Head injury criterion make Car manufacturer (62)
year Car model year mkmodel Car model (464)
body Car body type (18) transm Transmission type (7)
engine Engine type (15) engdsp Engine displacement (liters)
vehtwt Vehicle weight (kg) colmec Collapse mechanism (11)
vehwid Vehicle width (mm) modind Modification indicator (5)
vehspd Vehicle speed (km/h) crbang Crabbed angle
tksurf Track surface (5) pdof Principal direction of force
tkcond Track condition (6) impang Impact angle
occtyp Occupant type (10) dumsiz Dummy size (6)
seposn Seat position (5) barrig Barrier rigidity (2)
barshp Barrier shape (14) belts Seat belt type (3)
airbag Airbag present (2) knee Knee restraint present (2)
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√
hic vs. vehspd — does speed kill?
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GUIDE piecewise linear model for
√
hic
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Data and fits in terminal nodes, by barrier rigidity
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Data and fits in terminal nodes, by airbag
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GUIDE piecewise two-predictor model for
√
hic

vehspd
≤ 55

airbag
= no

year
≤ 1987

vehspd
impang 8

24.3
9

27.1

crbang
impang

5
18.7

crbang
impang

3
25.2

year
vehspd

Wei-Yin Loh (UW Madison) Regression Models You Can See 29 / 39



Distribution of data points
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Contour plots of data and fitted functions
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Blue points are 3× IQR above 3rd quartile of residuals
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The most unsafe (blue) vehicles

1975 Ford Torino 1988 Chevy Sportvan
1975 Honda Civic 1988 Ford Tempo
1975 Plymouth Fury 1995 Honda Accord
1975 Volvo 244 2000 Nissan Altima
1979 Dodge Colt 2000 Nissan Maxima (3)
1979 Peugeot 504 2000 Saab 38235 (2)
1980 Chevy Citation 2000 Subaru Legacy (2)
1982 Renault Fuego 2002 Ford Explorer
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Prediction accuracy — 27 algorithms

Cart CART Mc M5 constant
Cr CUBIST rule-based Mcb Bagged Mc
Ci CUBIST composite Mm M5 multiple linear
Crb Boosted CUBIST Mmb Bagged Mm
Gc GUIDE constant mars MARS
Gl GUIDE simple linear mart MART
Gq GUIDE simple quadratic nnet Neural network
Gm GUIDE multiple linear pol POLYMARS
Gs GUIDE stepwise linear ppr Projection pursuit
Gs2 GUIDE 2-regressor stepwise Rc RT constant
Gf2 GUIDE 2-regressor forward Rm RT multiple linear
gam Generalized additive model Rp RT partial linear
lad Least absolute deviation rreg Robust regression
lr Least squares
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Prediction accuracy — 52 datasets
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Prediction MSE relative to multiple linear regression
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Boxplots of prediction MSE relative to LR
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Concluding remarks

Advantages of piecewise simple and two-predictor models
1 Adaptive
2 Visualizable
3 Interpretable
4 At least as accurate as multiple linear regression
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Concluding remarks

Advantages of piecewise simple and two-predictor models
1 Adaptive
2 Visualizable
3 Interpretable
4 At least as accurate as multiple linear regression

Future work
Other robust methods (lower breakdown but higher efficiency)

Robustify while-versus-after tree construction
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Forthcoming papers

Kim, Loh, Shih and Chaudhuri, “Visualizable and interpretable
regression models with good prediction power.” Submitted to IIE
Transactions Special Issue on Data Mining

Loh, “Regression by parts: Fitting visually interpretable models
with GUIDE.” To appear in Handbook of Computational Statistics,
vol. III. Springer

Loh, “Logistic regression tree analysis.” To appear in Handbook of
Engineering Statistics. Springer

Download GUIDE:
http://www.stat.wisc.edu/~loh/guide.html
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