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Percolation

P[white] = 1/2 independently



Dynamic Percolation




Infinite clusters?

For static percolation:

» Harris (1960): There is no infinite cluster
» Kesten (1980): There is if we increase p

For dynamic percolation:

At most times there is no infinite cluster
» Can there be exceptional times?



 Any infinite graph G has a p,.

pe = inf{p € [0,1] : Py[|C(0)| = oo] > 0}

Haggstrom, Peres, Steif (1997)
 Above p.: P[Vt3 infinite cluster] =1
« Below p.: P[3t3 infinite cluster] =0
The latter at p, for Z9, d>18.

Some (non reQ) trees with exceptional times.
Much about dynamic percolation on trees...



Exceptional times exist

Theorem (SS): The triangular grid
has exceptional times at p..

This is the only transitive graph for
which it is known that there are
exceptional times at p..



Proof idea 0: get to distance R

¢ Set

Ip:={te€[0,1]:0 <+ R}

« We show

P[VR Ip £ 0] = i%fP[IR#@] > 0

Namely, with positive probability t
of the origin is unbounded for t Iin

ne cluster

0,1].



2"d moment argument

We show that

o EUR?

r E[u(IR)]? '

Then use Cauchy-Schwarz:

Plu(IR) > OlE[u(1R)?] > E[u(Ig)]?



2"d moment spelled out

1
u(IR) :/O Licr,dt
E[u(Ip)?] = /01 /OlP[t,s A al s

Consequently, enough to show

/OlP[O,t e Ip]ldt < O(1) P[0 e IR]Q.



Interested in expressions of the form

E[f(wo) f(wt)]

Where w Is the configuration at time
t, and fis a function of a static configuration.

Rewrite
E[f(wo)E[f(w)|wol]l = E[f T3 f]

where
Ty f(w) = E[f(wt)|wo = W]



Understanding 7,

Set 1 v is open
Uyl ) 1= _
—1 v Is closed

Then g
1iuy = e "uy
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Write f(w) = Z F(S) ug(w)

SCV

f(S) :=Elug f
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Noise sensitivity

Theorem (BKS): When f, is the indicator
function for crossing an n x n square in
percolation, for all positive t

lim E[fnTt fn} = E[fnf = 0.

n—aoo

Equivalently, for all &=Dftkestl
: > 2
Jir m vay (Tl P3< & 0.

|S|=F




Need more quantitative

Conjectured (BKS):

lim E{fnTtn fn} 0%, E[fn]Q = 0,

== g

We (SS) prove this (for Z2 and for the
triangular grid).



Estimating the Fourier weights

Theorem (SS): Suppose that there is a
randomized algorithm for calculating f

that examines each bit with probability at
most 0. Then

> F(8)2< /5 I1£112

S|=k

Probably not tight.
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Annulus case 0o

TS

e



Annulus case 0o

The o for the algorithm calculating
cross(r <> R)(w) is approximately

0 ~ a(r,R) a>(0,r)

get to approx visit a
radius r particular hex



Putting it together

P[o,t c IR] < a(0,7) {@

P Nafl) =R g Splige)?

k>0 S|=k
S O e el A
k>0
~ a(r,R)? + t= 2 a>(0,r) a(r, R)?
Etc...



What about Z2 ?

« The argument almost applies to Z2

1. Have as(r, R) < a(r, R)?
Need  ay(r,R) < a(r,R)? (r/R)

2. Improve o (better algorithm)

3. Improve Fourier theorem

4. Calculate exponents for Z2



Interface
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How small can o be

BSW:

Example with 0 = n_1/2\/log n
Monotone example with 0 ~ n_1/3log n
These are balanced

Best possible, up to the log terms

* The monotone example shows that the
Fourier inequality is sharp at k=1.



Next

Proof of Fourier estimate
Further results

Open problems

End



Theorem (SS): Suppose that there is a
randomized algorithm for calculating f

that examines each bit with probability at
most 8. Then

> F(8)? < ks|IfI.

|S|=Fk



Fourier coefficients change under
algorithm

When algorithm examines bit i :

i {—-us\{i} 1€ S,
Ug i & S.

F(S) £ F(SU{i}), i¢s,
O, i€ S.

new f(S) = «

\



Proof of Fourier Thm

o7 S S o T
S|=k

> F(S)>’=E|gf
1S|=k
=E[E[gf | A]| =E[fE[g | A]|

< IFIE[El | 412" = 171 E[gA@)?]



- — /2
F(9)? < I IKE|g4(9)*
&

E[g2(9)?] = E[llg?1?] - 3 E[s4(5)?]

S
<lgl*= > §(S)°P|SnA=0
1S|=k
= Y G(S)°P|SNA#0| <kd|gl?
1S|=k

QED



Further results

st . . 31
— < dim(exceptional times) < ¥,

Never 2 infinite clusters.



Wedges




Wedges

» Exceptional times with k different infinite

clusters if E(2k — 1
9>87T( )
* None if L(2k — 1
9<47T( )
« HD:
2k — 1)k 4(2k — 1
- TR P4l AR L

30 Y 7 90






Cones

» Exceptional times with k>1 different infinite

clusters if AT 24
0>4r :

* None if ak2 _ 1
0 <2m :

« HD:

4k% — 1 _ 4k2 — 1
l—4m <dm<1-—-27 :
36 Of




Open problems

mprove estimate for ¢
mprove Fourier Theorem
Percolation Fourier coefficients
Settle 72

Correct Hausdorff dimension?
Space-time scaling limit







