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Talk Series

1. Today: Overview of SLE and processes converging to SLE

2. Tomorrow (Wed): Hands on SLE

(a) Cardy’s formula via SLE
(b) Proving that the harmonic explorer converges to SLE

3. Thursday: Dynamical percolation
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One dimensional Brownian motion

A simple way to describe Brownian motion is as a scaling limit of simple
random walk.
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Let S(0) = 0 and given S(1), . . . , S(n) let S(n + 1) := S(n) ± 1 with
probability 1/2 each. Then S(n) is simple random walk in Z. For δ > 0 let

Sδ(t) := δ S
(bt δ−2c) , t > 0 .

As δ ↓ 0, Sδ converges to Brownian motion B(t).

One-dimensional Brownian motion is a random continuous path B :
[0,∞) → R. It has the Markov property: given B(t), the past, B|[0,t]

and the future, B|[t,∞), are independent.
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Two dimensional Brownian motion as a scaling limit

Two dimensional Brownian motion can be obtained as the scaling
limit of the simple random walk on the Z2 grid (as well as
other grids). The right scaling to take is Sδ(t) := δ S

(
t δ−2

)
.
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Lévy’s theorem: conformal invariance of Brownian
motion

Let Bt be planar Brownian motion. If D ⊂ C is a domain containing 0 and
f : D → C is analytic, then f(Bt) is time-changed Brownian motion.

f
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Reminder: conformal maps

A map f : D → D′ is conformal if it is an angle-preserving and orientation
preserving homeomorphism. Equivalently, f is analytic and f−1 is analytic.
(Equivalently, f is analytic and injective.)

Riemann’s mapping theorem tells us that for every simply connected D ⊂ C,
D 6= C, there is a conformal map from D onto the unit disk, f : D → U.
The collection of such maps is 3 dimensional.
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Percolation

In Bernoulli(p) percolation, each hexagon is white (open) with probability p,
independently. The connected components of the white regions are studied.

Various similar models include bond p-percolation on Zd.
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Critical Percolation

There is some number pc ∈ (0, 1) such that there is an infinite component
with probability 1 if p > pc and with probability 0 if p < pc.

The large-scale behaviour changes drastically when p increases past pc. This
is perhaps the simplest model for a phase transition.

Theorem (Harris 1960). At p = 1/2 there are no inifinite clusters a.s.
Therefore, pc > 1/2.

Theorem (Kesten 1980). pc = 1/2.
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A large critical cluster

At pc, there are no infinite clusters. If we condition on the event that the
cluster of the origin has more than 1000 vertices, then here’s what it looks
like.
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Percolation exponents

Physicists have predicted some exponents describing asymptotics of critical
percolation in 2D.

For example, Nienhuis conjectured that the probability that the origin is in
a cluster of diameter > R is

R−5/48+o(1), R →∞

and Cardy conjectured that the probability that the origin is connected to
distance R within the upper half plane is

R−1/3+o(1), R →∞.
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Critical percolation interface
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SLE motivation

Take fine scale, and stop when curve has size ε.
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Apply a conformal map in the slitted half-plane to map back to the half-plane

f1

f1(z) = z + a1 z−1 + a2z
−2 + · · ·

By conformal invariance, the image under f1 of the continuation of the path
on the left is approximately equal to the original distribution of the path,
except that it is translated to the image of the tip under f1.
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Suppose that w1 is the image of the tip. Then we may continue the path a
bit further. In the next step we map by

G2 = f2 ◦ f1, f2
L= Tw1 ◦ f1 ◦ T−w1.

We may continue inductively, letting wj be the image of the tip in the j-th
stage. Then

Gn = fn ◦ fn−1 ◦ · · · ◦ f1,

where
T−wj

◦ fj+1 ◦ Twj

L= f1.

Each fj is close to the identity map. So we may attempt to think of this as
a flow, rather than discrete steps.

15



To understand the flow, let’s look again at f1

f1(z) = z + a1z
−1 + · · ·

We may choose a1 = 2 ε. Then scaling implies

f1(z) = z + 2 ε z−1 + O(ε3/2), fj+1(z) = z +
2 ε

z − wj
+ O(ε3/2).

Thus, we arrive at Loewner’s equation:

∂tgt(z) =
2

gt(z)− wt
.

In our case, wt is a sum of independent stationary increments, and is
symmetric and continuous. It follows that it is a multiple of Brownian
motion.
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SLE definition

Fix κ > 0. Let wt = B(κ t), where B is standard one dimensional Brownian
motion. Define gt in the upper half plane by solving the ODE

∂tgt =
2

gt(z)− wt
, g0(z) = z .

This is chordal SLE(κ).

The growing path is γ(t) = g−1
t (wt).

The unbounded component in the complement of the path is g−1
t (H).
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Radial SLE

Chordal SLE is a random path connecting two boundary points of a simply
connected domain (0 and ∞ in H).

Radial SLE connects a boundary point to an interior point (0) in the unit
disk U. It is obtained by solving

∂tgt = −gt(z)
gt(z) + wt

gt(z)− wt
, g0(z) = z ,

where wt = exp
(
i B(κ t)

)
is Brownian motion on the unit circle.
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Locality of SLE(6)

The value κ = 6 turns out to be special. It is the only value of κ for which
the target point and the shape of the domain do not matter (up to a time
change). The SLE(6) path does not feel the boundary before it hits it.
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BM frontier is that of SLE(6)

Theorem (Lawler-Schramm-Werner). The outer boundary of 2D BM is
the same as that of SLE(6) (when set up correctly.)
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Corollaries about planar BM

Theorem (Lawler-Schramm-Werner). The outer boundry of SLE(6)
(and therefore of planar BM) has Hausdorff dimension 4/3 (as conjectured
by Mandelbrot). The set of cut points has Hausdorff dimension 3/4.
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Percolation interface is SLE(6)

Smirnov’s Theorem (2001). The above model of critical percolation is
conformally invariant. The percolation interface scaling limit is SLE(6).
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Percolation exponents

Theorem (Lawler-Schramm-Werner). The probability that the origin is
connected to distance R is R−5/48+o(1) as R →∞.

Other exponents and properties too (Kesten, Smirnov-Werner).
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Critical Ising model interface is SLE(3) (conj)

(Thanks David B. Wilson)
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Uniform spanning tree

Loop-erased random walk

Peano path (Hamiltonian path on
the Manhatten lattice)
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Loop-erased walks

The loop-erasure of simple random walk (with some stopping time) is
LERW.
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LERW and UST

Wilson’s algorithm. The UST on any (finite, connected) graph can be built
from a union of LERW paths: Order the vertices arbitrarily v0, v1, . . . , vn.
Set T0 := {v0}. Inductively, let Tj+1 be the union of Tj and the loop-erasure
of simple random walk from vj+1 stopped when it first hits Tj. Then Tn is
a UST on G.
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Richard Kenyon proved that some properties of UST and LERW are
conformally invariant in the scaling limit.

For example, he showed that the asymptotic distribution of the meeting
point of three vertices adjacent to the boundary of a simply connected
domain is conformally invariant.
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LERW, UST, Peano

Theorem (Lawler-Schramm-Werner 2002). The LERW scaling limit is
SLE(2). The UST Peano path scaling limit is SLE(8).

Corollary. The UST, LERW and UST Peano path are conformally invariant.
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Harmonic explorer converges to SLE(4)

Theorem (Schramm-Sheffield 2003). The harmonic explorer scaling
limit is SLE(4).
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Harmonic explorer simulation
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Discrete GFF

The discrete Gaussian free field is random a real valued function h on
the vertices of the grid, such that (h(v) : v ∈ V ) is a multi-dimensional
Gaussian. The probability density of h is proportional to

exp
(
−

∑

[u,v]

(h(v)− h(u))2

2

)
.

The boundary values of h are fixed.

Rick Kenyon has shown that the Gaussian free field is the scaling limit of
the domino tiling (dimer tiling) height function.
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DGFF interface
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Gaussian free field interface is SLE(4)

Theorem (Schramm-Sheffield [in preparation]). The interface of the
[discrete] Gaussian free field [scaling limit] is SLE(4).

The Gaussian free field is central to the (heuristic) determination of
exponents for several distinct statistical physics models.
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Self-avoiding walk

The half-plane SAW scaling limit is SLE(8/3) (Conj. LSW). Supported
experimentally by Tom Kennedy.

Half plane SAW
(by Tom Kennedy)
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Existence of the SLE path

Theorem. g−1
t (w(t)) is well-defined and is a.s. a continuous path.

(Rohde-Schramm (2001) for κ 6= 8, Lawler-Schramm-Werner (2002) for
κ = 8.)

The SLE trace is the path t 7→ g−1
t

(
w(t)

)
.
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Phases of SLE

Theorem Rohde-Schramm (2001). The SLE(κ) trace is a simple path
iff κ 6 4. It is space filling iff κ > 8.

κ ∈ [0, 4] κ ∈ (4, 8) κ ∈ [8,∞)

In the phase κ ∈ (4, 8), the SLE path makes loops “swallowing” parts of
the domain. However, it never crosses itself.
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Hausdorff Dimension

Beffara’s Theorem. The Hausdorff dimension of the SLE(κ) path is
1 + κ/8 when κ ∈ [0, 8].
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SLE gives (proved)

• critical site percolation on the triangular grid (6)

• LERW (2)

• UST Peano curve (8)

• GFF, HE (4)
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SLE gives (conj)

• other critical percolation (6)

• Ising (3,6)

• FK cluster boundaries (q = 2 + 2 cos(8π/κ), κ ∈ [4, 8])

• O(n) models (n = −2 cos(4π/κ), Kager-Nienhuis)

• SAW (8/3)

• Double domino (4)
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SLE does not give

• DLA (not conformally invariant)

• MST paths (Weiland-Wilson)

• Dimension > 2
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Conjectures and problems

Smirnov’s Theorem for critical bond percolation on Z2.

The half-plane SAW scaling limit is SLE(8/3) (Conj. LSW). Supported
experimentally by Tom Kennedy.

Several other processes have SLE as scaling limit (critical Ising, FK-
interfaces, double-domino,...).

Sample path properties?

Modulus of continuity?

Intersection behaviour?

Convergence speed?
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