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Covering Array

A Covering Array, denoted CA(N, k, g), is a k x Narray

with:

a entries from Z, (g is the alphabet)

q and between any two rows any pair from Z, occurs in some column.
(Pairs of rows satisfying this property are said to be Qualitatively Independent.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

room \ test:
bedroom
hall
bathroom

kitchen 1
Example of an optimal CA: CAN(4, 2) = 5.




Applications

Covering Arrays are used in:

g Circuit Testing (Boroday and Grunskii, 1992)
a Network Testing (Williams and Probert, 1996)

g Software Testing (Cohen, Dalal, Fredman and
Patton, 1997; Cheng, Dumitrescu and Schroeder, 2003)




Software Testing Application

Software Testing:

Test parameters individually.
But faults generally result from the interaction between certain
parameters.
Test every possible combination of parameter values. g GROWS EXPONENTIALLY!
Enormous test suite sizes even for a small number of parameters.
Covering arrays are used to test interaction between every pair of parameters.

Example: 10 parameters with 4 input values

4, All possible interactions => 4'°= 1,048,576 test suites.
4, All pair-wise interactions => 29 test suites using a covering array.

Asymptotic result (Gargano, Korner and Vaccaro, 1990)
lim CAN( g, k) = > log k

k =




Circuit Testing Application

X X,
f We do not need to
test the interaction
between {Xx,, x,} or

{Xo5 X4} -

Build this graph:

X1O

X3

O

Build a CA on the

above graph. -




Software Testing: Relevant Interactions

Find the area of two triangles given P, P,, P;, H,, H, each with 3 values.

We do not need to
test the interaction
between {P,, P},
{P1= H2}= {P3= H1}=
or {H;, Hy} .

Build this graph:

calculateTriangleArea(P1, P2, P3, H1, H2)
{

A1=0.5*(P2-P1) * H1;

A2 = 0.5~ (P3 — P2) * H2;
return (A1, A2) Build a CA onithe
1 albove graph.




Covering Arrays on Graphs

A Covering Array on a Weighted Graph G, denoted
CA(N, G, g), is a

a kx Narray where k = |V(G)|

g With entries from Z; (g is the alphabet and weight on vertices)
q rows for adjacent vertices are qualitatively independent
CAN(G, g) is the smallest N such that a CA(N, G, g) exists.

Test wiring in your home:
A: 2 B: 2 room \ test:

A: bedroom
B: hall

C: bathroom
D: kitchen

Example of an optimal CA: CAN(G, 2)=4. 38




Covering Array

A Covering Array, denoted CA(N, k, g), is a k x Narray

with:

a entries from Z, (g is the alphabet)

q and between any two rows any pair from Z, occurs in some column.
(Pairs of rows satisfying this property are said to be Qualitatively Independent.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

room \ test:
bedroom
hall
bathroom

kitchen 1
Example of an optimal CA: CAN(4, 2) = 5.




Software Testing: Mixed Case

Find the area of two triangles given P, P,, P5;, H;, H, each with a different number of values.

We do not need to
test the interaction
between {P,, P},
{P1= H2}= {P3= H1}=
or {H;, Hy} .

Build this graph:

calculateTriangleArea(P1, P2, P3, H1, H2)
{

A1=0.5*(P2-P1) * H1;

A2 = 0.5~ (P3 — P2) * H2;
return (A1, A2) Build a CA onithe
1 albove graph.




Mixed Covering Arrays on Graphs

A Mixed Covering Array on a weighted Graph G, denoted by

CA(N, G, g,9,---0,), has mixed alphabet sizes for different rows
In the graph.

The Product Weight of a graph G, denoted PW(G), is
PW(G) = max {wg(u) * wg(v) : {u,v} € E(G) }.

CAN(G, 91,9,---, 9,) = PW(G)

room \ test:

A: bedroom

B: hall

C: bathroom

D: Kitchen

Example of an optimal CA: CAN(G, 233) = 6.




Graph Homomorphisms

A mapping ¢ from V(G) to V(H) is a graph homomorphism
from G to Hif for all v, we V(G), the vertices @(v) and ¢(w)
are adjacent I Hwhenever vand W are adjacent in G.

¢ )
¢ )

Let Gand H be weighted graphs. A mapping ¢ from V(G) to
V(H) is a weight-restricted graph homomorphism,
denoted G—* 5 H, if ¢ is a graph homomorphism from G to
H such that wg(v) = wy( @(v)), for all v€ V(G).

@, O @, O
v o) v N\ 9w
wv)=5 w(9Vv))=7 wv)=5 w(9))=4




Graph Homomorphisms

The following theorems are generalizations of work done by
Meagher and Stevens (2002) for the uniform alphabet case.

Theorem 1: (Meagher, Moura, Zekaoui)
Let G and H be weighted graphs with weights g., 9»,.. .,
g, and hy, h,, ..., b, respectively. If there exists a

weight- restrlcted graph homomorphism
9: G —— H then CAN(G, Hg ) = CAN(H, Hh )-

Theorem 2: (Meagher, Moura, Zekaour)
Let G be a weighted graphi with k vertices
and g; = g,=. < gkbe positive weights. Then, -
CAN(K,c pg) < CAN(G, Hg ) < CAN(Ky ), . L15.).




n-chromatic Graphs for n = 2,3,4,5

From Theorem 2 and results from the paper by Moura, Stardom,
Stevens, and Williams (2003), we get the next theorem.

Theorem 3: (Meagher, Moura, Zekaoui)
Let G be a weighted graph with k vertices with

weights g, =g, = *** =g,. If one of the following holds:

2) x(G) = 4 and [I:Lgfé {24, 641, or
3) x(G)=5 andngié {2°, 3%, 234} and g, & {4, 6, 10}, then

CAN(G’ﬁgf) < 0,10,

The covering array humber we are providing is an upper bound.




Mixed Qualitative Independence Graph

Mixed Qualitative Independence Graph, denoted

[
QI(N, I:TIgf ), IS a graph:

g Whose vertex set Is the set of all g-partitions of ani N-set

g vertices are adjacent if and only if their corresponding
partitions are qualitatively independent.

Example: QI(6, 2x3)

g,=2

g5

3

123 | 456

124 | 356

12 | 3456

156 | 234

;

12 | 35 | 46




Mixed Qualitative Independence Graph

Theorem 4: (Meagher, Moura, Zekaoui)
For a weighted graph G and positive integers N and g, 0,.- -
g, there exists a CA(N, G, Hg ) if and only if there eX|sts a
weight-restricted graph homomorphism G—— QI(N, Hg ).

Corollary 5: (Meagher, Moura, Zekaoui)

Let N be a positive integer and let G be a weighted graph with
distinct weights g., g,,..., g,, repeated s,, s, ..., S, times,
respectively. If w(G) > w(QI(N/1s ) or X(G) > X(QI(N, 1),
then CAN(G, [1¢") > N.




Mixed Covering Arrays on Graphs

The problem of finding an optimal covering array on a general graph has
been shown to be NP-hard, even when restricted to the binary alphabet
case. (Seroussi and Bshouty, 1988)

We will build optimal covering arrays for special classes of graphs:
a trees,

¢ cycles, and

¢ bipartite graphs.

From Theorem 3, for G in one of these classes we have
CAN(G, 91,92;--+,9k) = Gi.19k-

Theorem 6: (Meagher, Moura, Zekaoui)
Let G be a weighted tree, cycle or bipartite graph then,
CAN(G, 9,,9,,---,0,) = PW(G).




Graph Operations

g One-vertex Edge Hooking

Insert a new edge where one end is in V(G) and the other is a new vertex.
a Edge Duplication

Create an edge that is parallel to an existing edge in G.
g Weight-Restricted Edge Subdivision

Edge subdivision such that if x is the new vertex in G adjacent to vertices y and z
then we(X)we(y) = PW(G) and we(x)we(2) = PW(G).

The above operations will have no effect on the covering array number
of the modified graph.




Optimal Tree Construction

g Build a tree T by starting PW(T) =
with an edge {u, v} such
that PW(T) = w(u) * w(v).

O
g Next, apply successive
one-vertex edge-hooking
In the proper order so as
to obtain T.

a CAN(T; g5 9,-..9,)=PW(T)




Optimal Cycle Construction

To build a CA on
the cycle C below
with PW(C) = 9

A: 000111222
B: 012012012
C: 000011110
D: 012301230
E: 010110101

CA(9, C, 22324)

Step 1:

Step 2:

Step 3:

010110101

000111222

012012012

Step 4:

Step 5:

€)
/\
€) €)
\

000011110

/

012301230

@

6)

20




Optimal Bipartite Construction

Repeat each symbol 0,1,..., Repeat the symbols
g-1 (PW(G) /g;) times 0,1,...,9-1 (PW(G) / g) times

000111222333

012012012012

000000111111

012340123401

000000111111

010101010101

001122334401

Graph G: PW(G) = 12




Future Work

Finding Optimal Covering Arrays for other classes of graphs
g Solved for the uniform alphabet size cubic graphs and
wheels

Implementing Tabu Search Methods for Covering Arrays

Stardom’s Algorithm (2001).

Nurmela’s Algorithm (2004).

Moura and Zekaoui’s Algorithm (in progress)

which combines greedy techniques with a tabui search
method that adds or deletes a test case at each iteration.
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