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Covering ArrayCovering Array
A Covering Array, denoted CA(N, k, g), is a k x N array 
with:
q entries from Zg (g is the alphabet)
q and between any two rows any pair from  Zg occurs in some column. 
(Pairs of rows satisfying this property are said to be Qualitatively Independent.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

5544332211room room \\ test:test:

kitchen

bathroom

hall

bedroom

11100

11010

10110

01110

Example  of an optimal CA: CAN(4, 2) = 5.



44

ApplicationsApplications

Covering Arrays are used in:Covering Arrays are used in:

qq Circuit Testing Circuit Testing ((BorodayBoroday and and GrunskiiGrunskii, 1992), 1992)

qq Network Testing Network Testing (Williams and (Williams and ProbertProbert, 1996), 1996)

qq Software Testing Software Testing (Cohen, (Cohen, DalalDalal, , FredmanFredman and and 
Patton, 1997; Cheng, Patton, 1997; Cheng, DumitrescuDumitrescu and Schroeder, 2003)and Schroeder, 2003)
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Software Testing  ApplicationSoftware Testing  Application
Software Testing:Software Testing:

qq Test parameters individually.Test parameters individually.
qq But faults generally result from the  interaction between certaBut faults generally result from the  interaction between certainin

parameters.parameters.
qq Test every possible  combination of parameter values. Test every possible  combination of parameter values. ggkk GROWS EXPONENTIALLY!!GROWS EXPONENTIALLY!!
qq Enormous test suite sizes even for a small number of  parameterEnormous test suite sizes even for a small number of  parameters.s.
qq Covering arrays are used to test interaction between every pairCovering arrays are used to test interaction between every pair of parameters.of parameters.

Example: 10 parameters with 4 input valuesExample: 10 parameters with 4 input values

k = 10, g = 4,  All possible interactions => 4k = 10, g = 4,  All possible interactions => 410 10 = 1,048,576 test suites.= 1,048,576 test suites.
k = 10, g = 4, All pairk = 10, g = 4, All pair--wise interactions => 29 test suites using a covering array.wise interactions => 29 test suites using a covering array.

Asymptotic result (Asymptotic result (GarganoGargano, , KornerKorner and and VaccaroVaccaro, 1990), 1990)

limlim CAN( CAN( g, kg, k) =     log ) =     log kk
kk

2
g

∞→
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Circuit Testing ApplicationCircuit Testing Application
xx11 xx22 xx33 xx44

{ x{ x33, x, x4 4 }}{ x{ x11,, xx22, x, x3 3 }}

We do not need to We do not need to 
test the interaction test the interaction 
between {xbetween {x11, x, x44} or } or 
{x{x22, x, x44} .} .

x2x1

x3 x4

Build this graph:Build this graph:

Build a CA on the Build a CA on the 
above graph.above graph.
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Software Testing: Relevant InteractionsSoftware Testing: Relevant Interactions
Find the area of two triangles given PFind the area of two triangles given P11, P, P22, P, P33, H, H11, H, H2 2 each with 3 values.each with 3 values.

AA11

PP11 PP22 PP33

HH22

HH11

AA22

calculateTriangleArea(P1, P2, P3, H1, H2)calculateTriangleArea(P1, P2, P3, H1, H2)
{{

A1 = 0.5 * (P2 A1 = 0.5 * (P2 –– P1) * H1;P1) * H1;
A2 = 0.5 * (P3 A2 = 0.5 * (P3 –– P2) * H2;P2) * H2;

return (A1, A2)return (A1, A2)
}}

We do not need to We do not need to 
test the interaction test the interaction 
between {Pbetween {P11, P, P33},  },  
{P{P11, H, H22}, {P}, {P33, H, H11}, }, 
or {Hor {H11, H, H22} .} .

HH11

PP22PP11 PP33

HH22

Build this graph:Build this graph:

Build a CA on the Build a CA on the 
above graph.above graph.
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Covering Arrays on GraphsCovering Arrays on Graphs
A Covering Array on a Weighted Graph G, denoted 
CA(N, G, g), is a
q k x N array where k = |V(G)|
q with entries from Zg (g is the alphabet and weight on vertices)
q rows for adjacent vertices are qualitatively independent 
CAN(G , g) is the smallest N such that a CA(N, G, g) exists.

Test wiring in your home:
44332211room room \\ test:test:

11110000D: kitchenD: kitchen
00111100C: bathroomC: bathroom

11001100B: hallB: hall

11110000A: bedroomA: bedroom

B: 2A: 2

C: 2 D: 2

Graph G

Example of an optimal CA: CAN(G, 2) = 4.
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Covering ArrayCovering Array
A Covering Array, denoted CA(N, k, g), is a k x N array 
with:
q entries from Zg (g is the alphabet)
q and between any two rows any pair from  Zg occurs in some column. 
(Pairs of rows satisfying this property are said to be Qualitatively Independent.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

5544332211room room \\ test:test:

kitchen

bathroom

hall

bedroom

11100

11010

10110

01110

Example  of an optimal CA: CAN(4, 2) = 5.
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Software Testing: Mixed CaseSoftware Testing: Mixed Case
Find the area of two triangles given PFind the area of two triangles given P11, P, P22, P, P33, H, H11, H, H2 2 each with a different number of values.each with a different number of values.

AA11

PP11 PP22 PP33

HH22

HH11

AA22

calculateTriangleArea(P1, P2, P3, H1, H2)calculateTriangleArea(P1, P2, P3, H1, H2)
{{

A1 = 0.5 * (P2 A1 = 0.5 * (P2 –– P1) * H1;P1) * H1;
A2 = 0.5 * (P3 A2 = 0.5 * (P3 –– P2) * H2;P2) * H2;

return (A1, A2)return (A1, A2)
}}

We do not need to We do not need to 
test the interaction test the interaction 
between {Pbetween {P11, P, P33},  },  
{P{P11, H, H22}, {P}, {P33, H, H11}, }, 
or {Hor {H11, H, H22} .} .

HH11

PP22PP11 PP33

HH22

Build this graph:Build this graph:

Build a CA on the Build a CA on the 
above graph.above graph.
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Mixed Covering Arrays on GraphsMixed Covering Arrays on Graphs
A A Mixed Covering Array on a weighted GraphMixed Covering Array on a weighted Graph G, denoted by, denoted by
CA(N, G, g1g2…gk), hashas mixed alphabet sizes for different rowsmixed alphabet sizes for different rows
in the graph. in the graph. 

The The Product WeightProduct Weight of a graph of a graph G, denoted denoted PW(G), is is 
PW(G) = max {wG(u) * wG(v) : {u,v} � E(G) }.

CAN(G, g1,g2,…, gk) ≥ PW(G)

B: 3A: 2

C: 2 D: 2

00

00

11

11

44

00

11

22

00

55 66332211room room \\ test:test:

11111100D: kitchenD: kitchen

00111100C: bathroomC: bathroom

22110000B: hallB: hall

11001100A: bedroomA: bedroom

Example of an optimal CA: CAN(G, 233) = 6.

Graph G
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v                 (v)v                 (v)
w(vw(v) = 5      w(   (v)) = 4) = 5      w(   (v)) = 4

Graph HomomorphismsGraph Homomorphisms

A mapping     from V(A mapping     from V(GG) to V() to V(HH) is a ) is a graph homomorphismgraph homomorphism
from from GG to to HH if for all if for all vv, , ww V(V(GG), the vertices   (), the vertices   (vv) and   () and   (ww) ) 
are adjacent in are adjacent in HH whenever whenever vv and and ww are adjacent in are adjacent in GG. . 

Let Let GG and and HH be weighted graphs. A mapping be weighted graphs. A mapping from V(from V(GG) to ) to 
V(V(HH) is a ) is a weightweight--restricted graph homomorphism, restricted graph homomorphism, 
denoted denoted GG H,H, if     is a graph homomorphism from if     is a graph homomorphism from GG to to 
HH such that such that wwGG((vv) ) ≤≤ wwHH(( ((vv)), for all )), for all vv V(V(GG).).

φ

→w

φ

φ
φ∈

φ

φ
∈

vv

ww (w)(w)

(v)(v)φ
φ

G                    H G                    H 

v                 (v)v                 (v)
w(vw(v) = 5      w(   (v)) = 7) = 5      w(   (v)) = 7

φ φ
φ φ
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Graph HomomorphismsGraph Homomorphisms

Theorem 1: (Meagher, Theorem 1: (Meagher, MouraMoura, , ZekaouiZekaoui))
Let Let GG and and HH be weighted graphs with weights gbe weighted graphs with weights g11, g, g22,…, ,…, 
ggkk and hand h11, h, h22, …, h, …, hl l respectively. If there exists a respectively. If there exists a 
weightweight--restricted graph homomorphism restricted graph homomorphism 
: : GG H  H  thenthen CAN(CAN(GG,         ) ,         ) ≤≤ CAN(CAN(HH,        ).,        ).

Theorem 2Theorem 2: : (Meagher, (Meagher, MouraMoura, , ZekaouiZekaoui))
Let Let GG be a weighted graph with be a weighted graph with kk verticesvertices
and gand g11 ≤≤ gg22≤≤……≤≤ ggkk be positive weights. Then,  be positive weights. Then,  
CAN(CAN(KK

��((GG) ) ,        ) ,        ) ≤≤ CAN(CAN(GG,       ) ,       ) ≤≤ CAN(CAN(KK��(G) (G) ,           ).,           ).∏
=

)(

1

G

i
ig

ω
∏
=

k

j
jg

1

∏
+−=

k

Gkl
lg

1)(χ

→w
i

k

i
g∏

=1
j

l

j
h∏

=1
φ

The following theorems are generalizations of work done byThe following theorems are generalizations of work done by
Meagher and Stevens (2002) for the uniform alphabet case.Meagher and Stevens (2002) for the uniform alphabet case.
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nn--chromatic Graphs for chromatic Graphs for nn = 2,3,4,5= 2,3,4,5

Theorem 3Theorem 3: : (Meagher, (Meagher, MouraMoura, , ZekaouiZekaoui))
Let Let GG be a weighted graph with be a weighted graph with kk vertices with vertices with 

weights gweights g11 ≤≤ gg22 ≤≤ …… ≤≤ ggkk. If one of the following holds: . If one of the following holds: 

1)1) ��(G(G) = 2, 3, ) = 2, 3, 

2) 2) ��(G(G) = 4 and           {2) = 4 and           {244, 6, 644}, or}, or

3) 3) ��(G(G) = 5 and           {2) = 5 and           {255, 3, 355, 23, 2344} and g} and gkk--1   1   {4, 6, 10}, then {4, 6, 10}, then 

CAN(CAN(GG,       ) ,       ) ≤≤ ggkk--11ggkk..

The covering array number we are providing is an upper bound.The covering array number we are providing is an upper bound.

i

k

ki

g∏
−= 3

∉

i

k

ki

g∏
−= 4

∉ ∉

i

k

i

g∏
=1

From Theorem 2 and results from the paper by From Theorem 2 and results from the paper by MouraMoura, Stardom, , Stardom, 
Stevens, and Williams (2003), we get the next theorem.Stevens, and Williams (2003), we get the next theorem.
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Mixed Qualitative Independence GraphMixed Qualitative Independence Graph

Mixed Qualitative Independence GraphMixed Qualitative Independence Graph, denoted , denoted 

QIQI((NN,         ), is a graph,         ), is a graph::
qq whose vertex set is the set of all whose vertex set is the set of all ggii--partitions of an partitions of an NN--setset
qq vertices are adjacent if and only if their corresponding vertices are adjacent if and only if their corresponding 

partitions are qualitatively independent.partitions are qualitatively independent.

Example: QI(6, 2x3)Example: QI(6, 2x3)

∏
=

l

i
ig

1

gg1 1 = 2= 2 gg2 2 = 3= 3

156 | 234156 | 234

12 | 345612 | 3456

124 | 356124 | 356

123 | 456123 | 456 15 | 26 | 3415 | 26 | 34

12 | 35 | 4612 | 35 | 46

13 | 25 | 4613 | 25 | 46
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Corollary 5: (Meagher, (Meagher, MouraMoura, , ZekaouiZekaoui))

Let N be a positive integer and let G be a weighted graph with 

distinct weights gg11, g, g22,…, ,…, ggrr, repeated, repeated s1, s2, …, sr times, 

respectively. If �(G) > �(QI(N,     ) or �(G) > �(QI(N,      ), 

then CAN(G,     
si)  > N.

Theorem 4Theorem 4: : (Meagher, (Meagher, MouraMoura, , ZekaouiZekaoui))

For a weighted graph For a weighted graph GG and positive integers and positive integers N N and gand g11, g, g22,…, ,…, 

ggkk there exists a CA(there exists a CA(NN, , G,G, ) if and only if there exists a ) if and only if there exists a 

weightweight--restricted graph homomorphism restricted graph homomorphism GG QIQI((NN, , ).).

Mixed Qualitative Independence GraphMixed Qualitative Independence Graph

∏
=

r

i
ig

1

→w ∏
=

k

i
ig

1

i
r

i
g∏

=1

∏
=

k

i
ig

1

∏
=

r

i
ig

1
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Mixed Covering Arrays on Graphs Mixed Covering Arrays on Graphs 
The  problem of finding an optimal covering array on a general gThe  problem of finding an optimal covering array on a general graph has raph has 
been shown to be NPbeen shown to be NP--hard, even when restricted to the binary alphabet hard, even when restricted to the binary alphabet 
case. (case. (SeroussiSeroussi and and BshoutyBshouty, 1988), 1988)

We will build optimal covering arrays for special classes of graphs: 
q trees, 
q cycles, and
q bipartite graphs.

From Theorem 3, for G in one of these classes we have  
CAN(G, g1,g2,…,gk) ≤ gk-1gk.

Theorem 6: (Meagher, Moura, Zekaoui)
Let G be a weighted tree, cycle or bipartite graph then,

CAN(G, g1,g2,…,gk) = PW(G).
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Graph OperationsGraph Operations

q One-vertex Edge Hooking
Insert a new edge where one end is in V(G) and the other is a new vertex.

q Edge Duplication
Create an edge that is parallel to an existing edge in G.

q Weight-Restricted Edge Subdivision
Edge subdivision such that if Edge subdivision such that if xx is the new vertex in is the new vertex in GG adjacent to verticesadjacent to vertices yy and and zz
then then wwGG(x)w(x)wGG((yy) ) ≤≤ PW(G) and PW(G) and wwGG((xx)w)wGG((zz) ) ≤≤ PW(G).PW(G).

The above operations will have no effect on the covering array nThe above operations will have no effect on the covering array number umber 
of the modified graph.of the modified graph.
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4

Optimal Tree ConstructionOptimal Tree Construction

qq Build a tree T by starting Build a tree T by starting 
with an edge {u, v}  such with an edge {u, v}  such 
that PW(T) = that PW(T) = ww(u(u) * ) * ww(v(v). ). 

qq Next, apply successive Next, apply successive 
oneone--vertex edgevertex edge--hooking hooking 
in the proper order so as in the proper order so as 
to obtain T.to obtain T.

qq CAN(T, gCAN(T, g1 1 gg22……ggkk)=PW(T))=PW(T)

PW(T) = 15PW(T) = 15

3

53

2

2

5

3 5

2

4
2
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Optimal Cycle ConstructionOptimal Cycle Construction
To build a CA on
the cycle C below
with PW(C) = 9

Step 1:

Step 3:

Step 5:

Step 2:

Step 4:

3
3

3
3

2
3

3

2

2
3

3

012012012

000111222

010110101

000011110

012301230

A: 000111222
B: 012012012

E: 010110101

C: 000011110
D: 012301230

CA(9, C, 22324)

A:3

B:3

C:2D:4

E:2

3
3

24

2



2121

3

22

Graph Graph G: G: PW(PW(GG) = 12) = 12

Optimal Bipartite ConstructionOptimal Bipartite Construction

2

5

010101010101

012340123401

012012012012

001122334401

000000111111

000111222333

000000111111

3

5

2

2

4

5

2

4

5

2

4
3

5

2

5

5

5

2

2

5

2

4
3

Repeat the symbolsRepeat the symbols
0,1,…, g0,1,…, g--1 (PW(1 (PW(GG) / ) / ggii) times) times

Repeat each symbol 0,1,…, Repeat each symbol 0,1,…, 
gg--1 (PW(1 (PW(GG) / ) / ggii ) times) times
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Future WorkFuture Work
Finding Optimal Covering Arrays for other classes of graphsFinding Optimal Covering Arrays for other classes of graphs
qq Solved for the uniform alphabet size cubic graphs and  Solved for the uniform alphabet size cubic graphs and  

wheelswheels

Implementing Implementing TabuTabu Search Methods for Covering ArraysSearch Methods for Covering Arrays
qq Stardom’s Algorithm (2001).Stardom’s Algorithm (2001).
qq Nurmela’sNurmela’s Algorithm (2004).Algorithm (2004).
qq MouraMoura and and Zekaoui’sZekaoui’s Algorithm (in progress) Algorithm (in progress) 

which combines greedy techniques with a which combines greedy techniques with a tabutabu search search 
method that adds or deletes a test case at each iteration. method that adds or deletes a test case at each iteration. 
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