Mixed Covering Arrays on Graphs

Presenter:

Latifa Zekaoui

Joint work with Karen Meagher and Lucia Moura to appear in the Journal of Combinatorial Designs

School of Information and Technology University of Ottawa

Outline

- q Covering Arrays
- q Applications
- q Covering Arrays on Graphs
- q Mixed Covering Arrays on Graphs
- q Graph Homomorphisms
- q Mixed Qualitative Independence Graph
- q *n*-chromatic Graphs for n = 2,3,4,5
- q Graph Operations: Tree & Cycle Construction
- **q** Bipartite Graph Construction

Covering Array

A *Covering Array*, denoted **CA(N, k, g)**, is a **k** x **N** array with:

- q entries from Z_g (g is the alphabet)
- and between any two rows any pair from Z_g occurs in some column. (Pairs of rows satisfying this property are said to be *Qualitatively Independent*.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

room \ test:	1	2	3	4	5
bedroom	0	1	1	1	0
hall	0	1	1	0	1
bathroom	0	1	0	1	1
kitchen	0	0	1	1	1

Example of an optimal CA: CAN(4, 2) = 5.

Applications

Covering Arrays are used in:

- q Circuit Testing (Boroday and Grunskii, 1992)
- q Network Testing (Williams and Probert, 1996)
- Software Testing (Cohen, Dalal, Fredman and Patton, 1997; Cheng, Dumitrescu and Schroeder, 2003)

Software Testing Application

Software Testing:

- **q** Test parameters individually.
- g But faults generally result from the interaction between certain parameters.
- Test every possible combination of parameter values. gk GROWS EXPONENTIALLY!
- **Enormous test suite sizes even for a small number of parameters.**
- **q** Covering arrays are used to test interaction between every pair of parameters.

Example: 10 parameters with 4 input values

k = 10, g = 4, All possible interactions => $4^{10} = 1,048,576$ test suites. k = 10, g = 4, All pair-wise interactions => 29 test suites using a covering array.

Asymptotic result (Gargano, Korner and Vaccaro, 1990)

$$\lim_{k \to \infty} CAN(g, k) = \frac{g}{2} \log k$$

Circuit Testing Application

We do not need to test the interaction between $\{x_1, x_4\}$ or $\{x_2, x_4\}$.

Build this graph:

Build a CA on the above graph.

Software Testing: Relevant Interactions

Find the area of two triangles given P₁, P₂, P₃, H₁, H₂ each with 3 values.

We do not need to test the interaction between $\{P_1, P_3\}$, $\{P_1, H_2\}$, $\{P_3, H_1\}$, or $\{H_1, H_2\}$.

Build this graph:

Covering Arrays on Graphs

A Covering Array on a Weighted Graph G, denoted CA(N, G, g), is a

- q $k \times N$ array where k = |V(G)|
- q with entries from Z_q (g is the alphabet and weight on vertices)
- rows for adjacent vertices are qualitatively independent **CAN(G, g)** is the smallest **N** such that a CA(**N**, **G**, g) exists.

Test wiring in your home:

room \ test:	1	2	3	4
A: bedroom	0	0	1	1
B: hall	0	1	0	1_
C: bathroom	0	1	1	0
D: kitchen	0	0	1	1

Example of an optimal CA: CAN(G, 2) = 4. 8

Covering Array

A *Covering Array*, denoted **CA(N, k, g)**, is a **k** x **N** array with:

- q entries from Z_g (g is the alphabet)
- and between any two rows any pair from Z_g occurs in some column. (Pairs of rows satisfying this property are said to be *Qualitatively Independent*.)

CAN(k, g) is the smallest N such that a CA(N, k, g) exists.

Test light wiring in your home: 0 => OFF, 1 => ON

room \ test:	1	2	3	4	5
bedroom	0	1	1	1	0
hall	0	1	1	0	1
bathroom	0	1	0	1	1
kitchen	0	0	1	1	1

Example of an optimal CA: CAN(4, 2) = 5.

Software Testing: Mixed Case

Find the area of two triangles given P₁, P₂, P₃, H₁, H₂ each with a different number of values.

We do not need to test the interaction between $\{P_1, P_3\}$, $\{P_1, H_2\}$, $\{P_3, H_1\}$, or $\{H_1, H_2\}$.

Build this graph:

Mixed Covering Arrays on Graphs

A *Mixed Covering Array on a weighted Graph G*, denoted by $CA(N, G, g_1g_2...g_k)$, has mixed alphabet sizes for different rows in the graph.

The **Product Weight** of a graph G, denoted PW(G), is PW(G) = max { $w_G(u) * w_G(v) : \{u,v\} \in E(G)$ }.

$$CAN(\boldsymbol{G}, g_1, g_2, ..., g_k) \ge PW(\boldsymbol{G})$$

room \ test:	1	2	3	4	5	6
A: bedroom	0	1	0	1	0	1
B: hall	0	0	1	1	2	2
C: bathroom	0	1	1	0	1	0
D: kitchen	0	1	1	0	0	1

Example of an optimal CA: $CAN(G, 2^33) = 6$.

Graph Homomorphisms

A mapping ϕ from V(G) to V(H) is a *graph homomorphism* from G to H if for all v, $w \in V(G)$, the vertices $\phi(v)$ and $\phi(w)$ are adjacent in H whenever v and w are adjacent in G.

Let G and H be weighted graphs. A mapping ϕ from V(G) to V(H) is a weight-restricted graph homomorphism, denoted $G \xrightarrow{w} H$, if ϕ is a graph homomorphism from G to H such that $w_G(v) \leq w_H(\phi(v))$, for all $v \in V(G)$.

$$v \qquad \phi(v) \qquad v \qquad \phi(v) \qquad v \qquad \phi(v) \qquad w(v) = 5 \qquad w(\phi(v)) = 4$$

Graph Homomorphisms

The following theorems are generalizations of work done by Meagher and Stevens (2002) for the uniform alphabet case.

Theorem 1: (Meagher, Moura, Zekaoui) Let G and H be weighted graphs with weights $g_1, g_2, ..., g_k$ and $h_1, h_2, ..., h_l$ respectively. If there exists a weight-restricted graph homomorphism $\phi: G \xrightarrow{W} H$ then $CAN(G, \prod g_l) \leq CAN(H, \prod h_l)$.

Theorem 2: (Meagher, Moura, Zekaoui) Let G be a weighted graph with k vertices and $g_1 \le g_2 \le ... \le g_k$ be positive weights. Then, $CAN(K_{\omega(G)}, \prod_{i=1}^{\omega(G)} g_i) \le CAN(G, \prod_{j=1}^{n} g_j) \le CAN(K_{\chi(G)}, \prod_{l=k-\chi(G)+1}^{n}).$

n-chromatic Graphs for n = 2,3,4,5

From Theorem 2 and results from the paper by Moura, Stardom, Stevens, and Williams (2003), we get the next theorem.

Theorem 3: (Meagher, Moura, Zekaoui)

Let **G** be a weighted graph with **k** vertices with

weights $g_1 \le g_2 \le \cdots \le g_k$. If one of the following holds:

1)
$$\chi(G) = 2, 3,$$

2)
$$\chi(G) = 4$$
 and $\prod_{i=k-3}^{k} g_i \notin \{2^4, 6^4\}$, or

3)
$$\chi(G) = 5$$
 and $\prod_{i=k-4}^{n} g_i \notin \{2^5, 3^5, 23^4\}$ and $g_{k-1} \notin \{4, 6, 10\}$, then

$$\mathsf{CAN}(G, \prod_{i=1}^k g_i) \leq \mathsf{g}_{\mathsf{k-1}}\mathsf{g}_{\mathsf{k}}.$$

The covering array number we are providing is an upper bound.

Mixed Qualitative Independence Graph

Mixed Qualitative Independence Graph, denoted

QI(N, $\prod_{i=1}^{r} g_i$), is a graph:

- q whose vertex set is the set of all g_i -partitions of an N-set
- vertices are adjacent if and only if their corresponding partitions are qualitatively independent.

Example: QI(6, 2x3)

Mixed Qualitative Independence Graph

Theorem 4: (Meagher, Moura, Zekaoui)

For a weighted graph G and positive integers N and $g_1, g_2, ..., g_k$ there exists a CA(N, G, $\prod_{i=1}^k g_i$) if and only if there exists a weight-restricted graph homomorphism $G \xrightarrow{w} \mathbf{QI}(N, \prod_{i=1}^k g_i)$.

Corollary 5: (Meagher, Moura, Zekaoui)

Let N be a positive integer and let G be a weighted graph with distinct weights $g_1, g_2, ..., g_r$, repeated $s_1, s_2, ..., s_r$ times, respectively. If $\omega(G) > \omega(\mathbf{QI}(N, \prod_{i=1}^r g_i))$ or $X(G) > X(\mathbf{QI}(N, \prod_{i=1}^r g_i))$, then $\mathbf{CAN}(G, \prod_{i=1}^r g_i^{s_i}) > N$.

Mixed Covering Arrays on Graphs

The problem of finding an optimal covering array on a general graph has been shown to be NP-hard, even when restricted to the binary alphabet case. (Seroussi and Bshouty, 1988)

We will build optimal covering arrays for special classes of graphs:

- q trees,
- g cycles, and
- g bipartite graphs.

From Theorem 3, for G in one of these classes we have $CAN(G, g_1, g_2, ..., g_k) \le g_{k-1}g_k$.

Theorem 6: (Meagher, Moura, Zekaoui) Let G be a weighted tree, cycle or bipartite graph then, $CAN(G, g_1, g_2, ..., g_k) = PW(G)$.

Graph Operations

One-vertex Edge Hooking

Insert a new edge where one end is in V(G) and the other is a new vertex.

q Edge Duplication

Create an edge that is parallel to an existing edge in *G*.

q Weight-Restricted Edge Subdivision

Edge subdivision such that if x is the new vertex in G adjacent to vertices y and z then $w_G(x)w_G(y) \le PW(G)$ and $w_G(x)w_G(z) \le PW(G)$.

The above operations will have no effect on the covering array number of the modified graph.

Optimal Tree Construction

- Build a tree T by starting with an edge {u, v} such that PW(T) = w(u) * w(v).
- Next, apply successive one-vertex edge-hooking in the proper order so as to obtain T.
- q $CAN(T, g_1 g_2...g_k)=PW(T)$

PW(T) = 15

Optimal Cycle Construction

To build a CA on the cycle C below with PW(C) = 9

A: 000111222 B: 012012012 C: 000011110 D: 012301230 E: 010110101 CA(9, C, 2²3²4)

Optimal Bipartite Construction

Repeat each symbol 0,1,..., g-1 (PW(\mathbf{G}) / g_i) times

Repeat the symbols 0,1,..., g-1 (PW(*G*) / g_i) times

Graph *G*: PW(G) = 12

Future Work

Finding Optimal Covering Arrays for other classes of graphs a Solved for the uniform alphabet size cubic graphs and wheels

Implementing Tabu Search Methods for Covering Arrays

- q Stardom's Algorithm (2001).
- q Nurmela's Algorithm (2004).
- Moura and Zekaoui's Algorithm (in progress) which combines greedy techniques with a tabu search method that adds or deletes a test case at each iteration.

References

- S.Y. Boroday and I.S Grunskii. Recursive generation of locally complete tests. Cybernetics and Systems Analysis 28 (1992), 20- 25.
- C. Cheng, A. Dumitrescu and P. Schroeder. Generating small combinatorial test suites to cover input-output relationships. Proceedings of the Third International Conference on Quality software. Dallas (2003), p. 76-82.
- D.M.Cohen, S.R.Dalal, M.L.Fredman, and G.C.Patton. The AETG system: an approach to testing based on combinatorial design. IEEE Transactions on Software Engineering. 23(1997), p.437-44.
- C.J.Colbourn. Combinatorial aspects of covering arrays. Le Matematiche(Catania) 58(2004),
 p. 121-167.
- L.Garagano, J.Korner, and U.Vaccaro. Capacities: from information to extremal set theory. Journal of Combinatorial Theory. 68(1994), p. 296-316.
- K. Meagher, L. Moura, L. Zekaoui. Mixed Covering Arrays on Graphs. Journal of Combinatorial design. to appear.
- K. Meagher, B. Stevens. Covering arrays on graphs. Journal Combinatorial Theory. Ser. B 95(2005), p. 134-151.
- L. Moura, J. Stardom, B. Stevens, A. Williams. Covering Arrays with Mixed Alphabet Sizes. Journal of Combinatorial Design. 11(2003), p. 416-432.
- G. Seroussi and N.H.Bshouty. Vector sets for exhaustive testing of logic circuits. IEEE Trans. on Infor. Theory. 34(1988), p. 513-522.
- A.Williams and R.L.Probert. A measure for component interaction test coverage. IEEE(2001)₂₃ p. 301-311.

Workshops, Ottawa, May 12-16

http://www.fields.utoronto.ca/programs/scientific/05-06/discrete math/http://www.fields.utoronto.ca/programs/scientific/05-06/covering_arrays/

- Ottawa-Carleton
 DISCRETE MATH DAY
- May 12-13 (Friday-Saturday)
- Plenary Speakers:
 Bill Cook, Anthony Evans, Jonathan Jedwab, Pierre Leroux, Kieka
 Mynhardt
- Ø Workshop on COVERING ARRAYS
- Ø May 14-16 (Sunday-Tuesday)
- Ø Plenary Speakers:
 Rick Brewster, Charlie Colbourn,
 Peter Gibbons, Alan Hartman, Brett
 Stevens, Doug Stinson.

DEADLINE April 26

- Student financial support to travel to Ottawa
- Submission of abstracts for contributed talks

THANK YOU