Shifts in Cayley Graphs

Gabriel Verret
gverr026@uottawa.ca

University of Ottawa

Outline of the talk

- Definitions

Outline of the talk

- Definitions
- Shifts in Cayley Graphs

Outline of the talk

- Definitions
- Shifts in Cayley Graphs
- Main conjecture

Outline of the talk

- Definitions
- Shifts in Cayley Graphs
- Main conjecture
- Part of proof

Outline of the talk

- Definitions
- Shifts in Cayley Graphs
- Main conjecture
- Part of proof
- Conclusion

Graph definitions

- Let X be a simple graph and $\mathrm{V}(X)$ its vertex set.

Graph definitions

- Let X be a simple graph and $\mathrm{V}(X)$ its vertex set.
- Aut (X) will denote its automorphism group.

Graph definitions

- Let X be a simple graph and $\mathrm{V}(X)$ its vertex set.
- Aut (X) will denote its automorphism group.
- ~ will denote adjacency in the graph.

Graph definitions

- Let X be a simple graph and $\mathrm{V}(X)$ its vertex set.
- Aut (X) will denote its automorphism group.
- ~ will denote adjacency in the graph.
- $\alpha \in \operatorname{Aut}(X)$ is called a shift if
$v \sim \alpha(v), \forall v \in V(X)$.

Graph definitions

- Let X be a simple graph and $\mathrm{V}(X)$ its vertex set.
- Aut (X) will denote its automorphism group.
- ~ will denote adjacency in the graph.
- $\alpha \in \operatorname{Aut}(X)$ is called a shift if $v \sim \alpha(v), \forall v \in V(X)$.
- A graph that does not admit a shift is called shiftless.

Cayley Graph definitions

- Let G be a group and $Z(G)$ its center.

Cayley Graph definitions

- Let G be a group and $Z(G)$ its center.
- Let S be an inverse-closed, identity-free subset of G.

Cayley Graph definitions

- Let G be a group and $Z(G)$ its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X=\operatorname{Cay}(G, S)$ has $V(X)=G$ and
$u \sim v \Leftrightarrow \exists s \in S$ such that $u s=v . S$ is called the connection set of X.

Cayley Graph definitions

- Let G be a group and $Z(G)$ its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X=\operatorname{Cay}(G, S)$ has $V(X)=G$ and $u \sim v \Leftrightarrow \exists s \in S$ such that $u s=v . S$ is called the connection set of X.
- Define $\sigma_{g}: G \rightarrow G, \sigma_{g}(v)=g v$. Then $\sigma_{g} \in \operatorname{Aut}(X)$.

Cayley Graph definitions

- Let G be a group and $Z(G)$ its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X=\operatorname{Cay}(G, S)$ has $V(X)=G$ and $u \sim v \Leftrightarrow \exists s \in S$ such that $u s=v . S$ is called the connection set of X.
- Define $\sigma_{g}: G \rightarrow G, \sigma_{g}(v)=g v$. Then $\sigma_{g} \in \operatorname{Aut}(X)$.
- If Cay (G, S) is shiftless, then S is also called shiftless.

Shifts in Cayley Graphs

- LEMMA: If $g \in S \cap Z(G)$, then σ_{g} is a shift.

Shifts in Cayley Graphs

- LEMMA: If $g \in S \cap Z(G)$, then σ_{g} is a shift.
- PROOF: Let $v \in V(X)$.

Shifts in Cayley Graphs

- LEMMA: If $g \in S \cap Z(G)$, then σ_{g} is a shift.
- PROOF: Let $v \in V(X)$.
- $\sigma_{g}(v) \sim v \Leftrightarrow g v \sim v \Leftrightarrow v^{-1} g^{-1} v \in S \Leftrightarrow g^{-1} \in$ S.

Shifts in Cayley Graphs

- LEMMA: If $g \in S \cap Z(G)$, then σ_{g} is a shift.
- PROOF: Let $v \in V(X)$.
- $\sigma_{g}(v) \sim v \Leftrightarrow g v \sim v \Leftrightarrow v^{-1} g^{-1} v \in S \Leftrightarrow g^{-1} \in$ S.
- In particular, if G is abelian, then X has a shift unless it's edgeless.

Shifts in Cayley Graphs

- LEMMA: If $g \in S \cap Z(G)$, then σ_{g} is a shift.
- PROOF: Let $v \in V(X)$.
- $\sigma_{g}(v) \sim v \Leftrightarrow g v \sim v \Leftrightarrow v^{-1} g^{-1} v \in S \Leftrightarrow g^{-1} \in$ S.
- In particular, if G is abelian, then X has a shift unless it's edgeless.
- The converse is false : a Cayley Graph admitting a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.

Non-abelian Cayley Graph

- Let $G=<a, b ; a^{6}=b^{2}=1, b a b=a^{-1}>$ be the dihedral group of order 12, and $S=<b, b a^{2}, b a^{5}, a^{3}>$.

Non-abelian Cayley Graph

- Let $G=<a, b ; a^{6}=b^{2}=1, b a b=a^{-1}>$ be the dihedral group of order 12, and $S=<b, b a^{2}, b a^{5}, a^{3}>$.
- NOTE : $a^{3} \in Z(G)$ so $\sigma_{a^{3}}$ is a shift of $\operatorname{Cay}(G, S)$.

$$
\mathrm{S}=\left\{\mathrm{a}^{3}, \mathrm{~b}, \mathrm{ba}, \mathrm{ba} a^{5}\right\}
$$

Main conjecture

- A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.

Main conjecture

- A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.
- Move our point of view up to the group level :

Main conjecture

- A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.
- Move our point of view up to the group level :
- CONJECTURE : Let G be a group with no shiftless subset. Then all Cayley Graphs on G are isomorphic to Cayley Graphs on abelian groups.

Main conjecture

- FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.

Main conjecture

- FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.
- We can rephrase conjecture :

Main conjecture

- FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.
- We can rephrase conjecture :
- CONJECTURE : Let G be a group with no shiftless subset. Then G is abelian, generalized dicyclic or dihedral of order 6, 8 or 10.

General Procedure

- To prove the conjecture, we use this procedure :

General Procedure

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.

General Procedure

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.
- We figure out what this structure implies about the connection set of a Cayley Graph with a shift.

General Procedure

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.
- We figure out what this structure implies about the connection set of a Cayley Graph with a shift.
- We see what this implies about a group with no shiftless subset.

Shifts and 4-cycles

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.

Shifts and 4-cycles

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let $u v$ be an edge of X that is incident with a vertex of degree at least 3 . WLOG, there are only 2 cases:

Shifts and 4-cycles

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let $u v$ be an edge of X that is incident with a vertex of degree at least 3 . WLOG, there are only 2 cases:
- $u \neq \alpha^{ \pm 1}(v)$.

Shifts and 4-cycles

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let $u v$ be an edge of X that is incident with a vertex of degree at least 3 . WLOG, there are only 2 cases:
- $u \neq \alpha^{ \pm 1}(v)$.
- $\alpha(u)=v$.

Proof, case 1

- $u \neq \alpha^{ \pm 1}(v)$.

Proof, case 1

- $u \neq \alpha^{ \pm 1}(v)$.
- Let $t=\alpha(u), w=\alpha(v)$, so $t \neq w$. But since u and v are adjacent, so are t and v and we get a 4-cycle uvwt containing uv :

Proof, case 2

- $\alpha(u)=v$.

Proof, case 2

- $\alpha(u)=v$.
- Then u, v both have degree at least 3, so there exists a vertex t adjacent to u such that $\alpha(t) \neq u$. ut $\alpha(t) v$ is a 4-cycle containing $u v$:

Cayley graphs and 4-cycles

- COROLLARY : Let G be a group and S be an identity-free inverse-closed subset of G with $|S| \geq 3$ that is not shiftless. Then, $\forall a \in S$, $\exists b, c, d \in S$ such that $b a=d c \neq 1$ and $a \neq c$.

Cayley graphs and 4-cycles

- COROLLARY : Let G be a group and S be an identity-free inverse-closed subset of G with $|S| \geq 3$ that is not shiftless. Then, $\forall a \in S$, $\exists b, c, d \in S$ such that $b a=d c \neq 1$ and $a \neq c$.
- PROOF : Take $a \in S$. The edge $1 a$ is part of a 4-cycle C in Cay (G, S). Call c the other vertex adjacent to 1 in C (so $a \neq c$). Call x the last vertex in $C . x$ is adjacent to a and c so there must exist $b, d \in S$ such that $b a=d c=x \neq 1$.

Groups with no shiftless subsets

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^{2}=1 \neq a^{2}$. Then $b a b=a^{ \pm 1}$.

Groups with no shiftless subsets

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^{2}=1 \neq a^{2}$. Then $b a b=a^{ \pm 1}$.
- PROOF : Let $S=\left\{b, a, a^{-1}\right\}$. We can use previous result, so $\exists t, u, v \in S$ such that $b t=u v \neq 1, b \neq u$.

Groups with no shiftless subsets

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^{2}=1 \neq a^{2}$. Then $b a b=a^{ \pm 1}$.
- PROOF : Let $S=\left\{b, a, a^{-1}\right\}$. We can use previous result, so $\exists t, u, v \in S$ such that $b t=u v \neq 1, b \neq u$.
- $b a^{ \pm 1}=a^{ \pm 1} b \Rightarrow b a b=a^{ \pm 1}$.

Groups with no shiftless subsets

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^{2}=1 \neq a^{2}$. Then $b a b=a^{ \pm 1}$.
- PROOF : Let $S=\left\{b, a, a^{-1}\right\}$. We can use previous result, so $\exists t, u, v \in S$ such that $b t=u v \neq 1, b \neq u$.
- $b a^{ \pm 1}=a^{ \pm 1} b \Rightarrow b a b=a^{ \pm 1}$.
- $b a=a^{-2} \Rightarrow b=a^{-3} \Rightarrow b a b=a$.

Groups with no shiftless subsets

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^{2}=1 \neq a^{2}$. Then $b a b=a^{ \pm 1}$.
- PROOF : Let $S=\left\{b, a, a^{-1}\right\}$. We can use previous result, so $\exists t, u, v \in S$ such that $b t=u v \neq 1, b \neq u$.
- $b a^{ \pm 1}=a^{ \pm 1} b \Rightarrow b a b=a^{ \pm 1}$.
- $b a=a^{-2} \Rightarrow b=a^{-3} \Rightarrow b a b=a$.
- $b a^{-1}=a^{2} \Rightarrow b=a^{3} \Rightarrow b a b=a$.

Questions?

Workshops, Ottawa, May 12-16
 http://wuw. fields. utoronto. ca/programs/scientific/05-06/discrete math/

 http://w w. fields. utoronto. ca/programs/scientific/05-06/covering_arrays/- Ottawa-Carleton DISCRETE MATH DAY
- May 12-13 (Friday-Saturday)
- Plenary Speakers:

Bill Cook, Anthony Evans, Jonathan Jedwab, Pierre Leroux, Kieka Mynhardt

- Vorkshop on

COVERING ARRAYS

- May 14-16 (Sunday-Tuesday)
- Plenary Speakers:

Rick Brewster, Charlie Colbourn, Peter Gibbons, Alan Hartman, Brett Stevens, Doug Stinson.

DEADLINE APRIL 26

- Student financial support to travel to Ottawa
- Submission of abstracts for contributed talks

Questions?

Workshops, Ottawa, May 12-16
 http://wmw.fields. utoronto.ca/programs/scientific/05-06/discrete math/

 http://w w. fields. utoronto. ca/programs/scientific/05-06/covering_arrays/- Ottawa-Carleton DISCRETE MATH DAY
- May 12-13 (Friday-Saturday)
- Plenary Speakers:

Bill Cook, Anthony Evans, Jonathan Jedwab, Pierre Leroux, Kieka Mynhardt

- Workshop on

COVERING ARRAYS

- May 14-16 (Sunday-Tuesday)
- Plenary Speakers:

Rick Brewster, Charlie Colbourn, Peter Gibbons, Alan Hartman, Brett Stevens, Doug Stinson.

DEADLINE APRIL 26

- Student financial support to travel to Ottawa
- Submission of abstracts for contributed talks

- Thank you!

