

Gabriel Verret

gverr026@uottawa.ca

University of Ottawa

Shifts in Cayley Graphs - p.1/?

Definitions

- Shifts in Cayley Graphs
- Main conjecture

- Shifts in Cayley Graphs
- Main conjecture
- Part of proof

- Shifts in Cayley Graphs
- Main conjecture
- Part of proof
- Conclusion

• Let X be a simple graph and V(X) its vertex set.

- Let X be a simple graph and V(X) its vertex set.
- Aut(X) will denote its automorphism group.

- Let X be a simple graph and V(X) its vertex set.
- Aut(X) will denote its automorphism group.
- ${\scriptstyle
 m \bullet}$ \sim will denote adjacency in the graph.

- Let X be a simple graph and V(X) its vertex set.
- Aut(X) will denote its automorphism group.
- ${\scriptstyle
 m \bullet}$ \sim will denote adjacency in the graph.
- $\alpha \in \operatorname{Aut}(X)$ is called a *shift* if $v \sim \alpha(v), \forall v \in V(X)$.

- Let X be a simple graph and V(X) its vertex set.
- Aut(X) will denote its automorphism group.
- ${\scriptstyle
 m \bullet}$ \sim will denote adjacency in the graph.
- $\alpha \in \operatorname{Aut}(X)$ is called a *shift* if $v \sim \alpha(v), \forall v \in V(X).$
- A graph that does not admit a shift is called shiftless.

• Let G be a group and Z(G) its center.

- Let G be a group and Z(G) its center.
- Let S be an inverse-closed, identity-free subset of G.

- Let G be a group and Z(G) its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X = \operatorname{Cay}(G, S)$ has V(X) = G and $u \sim v \Leftrightarrow \exists s \in S$ such that us = v. S is called the *connection set* of X.

- Let G be a group and Z(G) its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X = \operatorname{Cay}(G, S)$ has V(X) = G and $u \sim v \Leftrightarrow \exists s \in S$ such that us = v. S is called the *connection set* of X.
- Define $\sigma_g: G \to G, \sigma_g(v) = gv$. Then $\sigma_g \in \operatorname{Aut}(X)$.

- Let G be a group and Z(G) its center.
- Let S be an inverse-closed, identity-free subset of G.
- $X = \operatorname{Cay}(G, S)$ has V(X) = G and $u \sim v \Leftrightarrow \exists s \in S$ such that us = v. S is called the *connection set* of X.
- Define $\sigma_g: G \to G, \sigma_g(v) = gv$. Then $\sigma_g \in \operatorname{Aut}(X)$.
- If Cay(G, S) is shiftless, then S is also called *shiftless*.

• LEMMA: If $g \in S \cap Z(G)$, then σ_g is a shift.

• LEMMA: If $g \in S \cap Z(G)$, then σ_g is a shift. • PROOF: Let $v \in V(X)$.

- LEMMA: If $g \in S \cap Z(G)$, then σ_g is a shift.
- **PROOF:** Let $v \in V(X)$.
- $\sigma_g(v) \sim v \Leftrightarrow gv \sim v \Leftrightarrow v^{-1}g^{-1}v \in S \Leftrightarrow g^{-1} \in S$.

- LEMMA: If $g \in S \cap Z(G)$, then σ_g is a shift.
- **PROOF:** Let $v \in V(X)$.
- $\sigma_g(v) \sim v \Leftrightarrow gv \sim v \Leftrightarrow v^{-1}g^{-1}v \in S \Leftrightarrow g^{-1} \in S$.
- In particular, if G is abelian, then X has a shift unless it's edgeless.

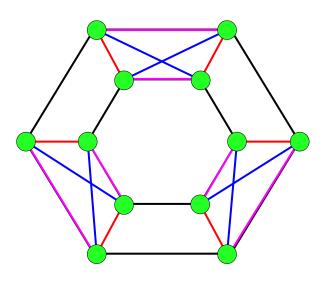
- LEMMA: If $g \in S \cap Z(G)$, then σ_g is a shift.
- **PROOF:** Let $v \in V(X)$.
- $\sigma_g(v) \sim v \Leftrightarrow gv \sim v \Leftrightarrow v^{-1}g^{-1}v \in S \Leftrightarrow g^{-1} \in S$.
- In particular, if G is abelian, then X has a shift unless it's edgeless.
- The converse is false : a Cayley Graph admitting a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.

Non-abelian Cayley Graph

• Let $G = \langle a, b; a^6 = b^2 = 1, bab = a^{-1} \rangle$ be the dihedral group of order 12, and $S = \langle b, ba^2, ba^5, a^3 \rangle$.

Non-abelian Cayley Graph

- Let $G = \langle a, b; a^6 = b^2 = 1, bab = a^{-1} \rangle$ be the dihedral group of order 12, and $S = \langle b, ba^2, ba^5, a^3 \rangle$.
- NOTE : $a^3 \in Z(G)$ so σ_{a^3} is a shift of Cay(G, S).



 $S=\{a^3,b,ba^2,ba^5\}$

 A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.

- A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.
- Move our point of view up to the group level :

- A Cayley Graph with a shift is not necessarily isomorphic to a Cayley Graph on an abelian group.
- Move our point of view up to the group level :
- CONJECTURE : Let G be a group with no shiftless subset. Then all Cayley Graphs on G are isomorphic to Cayley Graphs on abelian groups.

FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.

- FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.
- We can rephrase conjecture :

- FACT : The groups for which all Cayley Graphs are isomorphic to Cayley Graphs on abelian groups are the abelian groups, the generalized dicyclic groups, dihedral groups of order 6, 8, 10.
- We can rephrase conjecture :
- CONJECTURE : Let G be a group with no shiftless subset. Then G is abelian, generalized dicyclic or dihedral of order 6, 8 or 10.

To prove the conjecture, we use this procedure :

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.
- We figure out what this structure implies about the connection set of a Cayley Graph with a shift.

- To prove the conjecture, we use this procedure :
- We can prove that a graph with a shift has a certain structure.
- We figure out what this structure implies about the connection set of a Cayley Graph with a shift.
- We see what this implies about a group with no shiftless subset.

Shifts and 4-cycles

 LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let uv be an edge of X that is incident with a vertex of degree at least 3. WLOG, there are only 2 cases :

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let uv be an edge of X that is incident with a vertex of degree at least 3. WLOG, there are only 2 cases :

•
$$u \neq \alpha^{\pm 1}(v)$$
.

- LEMMA : Let X be a graph which admits a shift. Then every edge of X that is incident with a vertex of degree at least 3 is part of a 4-cycle.
- PROOF : Let α be a shift of X and let uv be an edge of X that is incident with a vertex of degree at least 3. WLOG, there are only 2 cases :

•
$$u \neq \alpha^{\pm 1}(v)$$
.

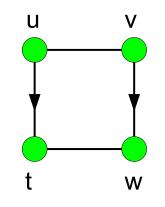
Proof, case 1

• $u \neq \alpha^{\pm 1}(v)$.

Proof, case 1

•
$$u \neq \alpha^{\pm 1}(v)$$
.

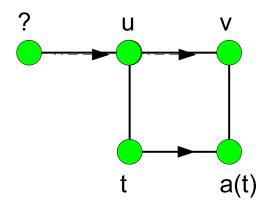
• Let $t = \alpha(u), w = \alpha(v)$, so $t \neq w$. But since uand v are adjacent, so are t and v and we get a 4-cycle uvwt containing uv:



• $\alpha(u) = v$.

•
$$\alpha(u) = v$$
.

• Then u, v both have degree at least 3, so there exists a vertex t adjacent to u such that $\alpha(t) \neq u$. $ut\alpha(t)v$ is a 4-cycle containing uv:

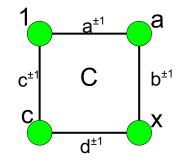


Cayley graphs and 4-cycles

• COROLLARY : Let G be a group and S be an identity-free inverse-closed subset of G with $|S| \ge 3$ that is not shiftless. Then, $\forall a \in S$, $\exists b, c, d \in S$ such that $ba = dc \neq 1$ and $a \neq c$.

Cayley graphs and 4-cycles

- COROLLARY : Let G be a group and S be an identity-free inverse-closed subset of G with $|S| \ge 3$ that is not shiftless. Then, $\forall a \in S$, $\exists b, c, d \in S$ such that $ba = dc \neq 1$ and $a \neq c$.
- PROOF : Take $a \in S$. The edge 1a is part of a 4-cycle *C* in Cay(*G*, *S*). Call *c* the other vertex adjacent to 1 in *C* (so $a \neq c$). Call *x* the last vertex in *C*. *x* is adjacent to *a* and *c* so there must exist $b, d \in S$ such that $ba = dc = x \neq 1$.



• COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^2 = 1 \neq a^2$. Then $bab = a^{\pm 1}$.

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^2 = 1 \neq a^2$. Then $bab = a^{\pm 1}$.
- PROOF : Let $S = \{b, a, a^{-1}\}$. We can use previous result, so $\exists t, u, v \in S$ such that $bt = uv \neq 1, b \neq u$.

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^2 = 1 \neq a^2$. Then $bab = a^{\pm 1}$.
- PROOF : Let $S = \{b, a, a^{-1}\}$. We can use previous result, so $\exists t, u, v \in S$ such that $bt = uv \neq 1, b \neq u$.
- $ba^{\pm 1} = a^{\pm 1}b \Rightarrow bab = a^{\pm 1}$.

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^2 = 1 \neq a^2$. Then $bab = a^{\pm 1}$.
- PROOF : Let $S = \{b, a, a^{-1}\}$. We can use previous result, so $\exists t, u, v \in S$ such that $bt = uv \neq 1, b \neq u$.

•
$$ba^{\pm 1} = a^{\pm 1}b \Rightarrow bab = a^{\pm 1}$$
.

• $ba = a^{-2} \Rightarrow b = a^{-3} \Rightarrow bab = a$.

- COROLLARY : Let G be a group with no shiftless subset. Let $a, b \in G$ such that $b^2 = 1 \neq a^2$. Then $bab = a^{\pm 1}$.
- PROOF : Let S = {b, a, a⁻¹}. We can use previous result, so ∃t, u, v ∈ S such that $bt = uv \neq 1, b \neq u.$

•
$$ba^{\pm 1} = a^{\pm 1}b \Rightarrow bab = a^{\pm 1}$$
.

- $ba = a^{-2} \Rightarrow b = a^{-3} \Rightarrow bab = a$.
- $ba^{-1} = a^2 \Rightarrow b = a^3 \Rightarrow bab = a$.

Questions?

٩

Workshops, Ottawa, May 12-16

http://www.fields.utoronto.ca/programs/scientific/05-06/discrete_math/ http://www.fields.utoronto.ca/programs/scientific/05-06/covering_arrays/

- Ottawa-Carleton DISCRETE MATH DAY
- May 12-13 (Friday-Saturday)
- Plenary Speakers: Bill Cook, Anthony Evans, Jonathan Jedwab, Pierre Leroux, Kieka Mynhardt
- Workshop on COVERING ARRAYS
- May 14-16 (Sunday-Tuesday)
- Plenary Speakers: Rick Brewster, Charlie Colbourn, Peter Gibbons, Alan Hartman, Brett Stevens, Doug Stinson.

DEADLINE APRIL 26

- Student financial support to travel to Ottawa
- Submission of abstracts for contributed talks

Questions? Workshops, Ottawa, May 12-16 http://www.fields.utoronto.ca/programs/scientific/05-06/discrete math/ http://www.fields.utoronto.ca/programs/scientific/05-06/covering arrays/ Ottawa-Carleton **DEADLINE APRIL 26** DISCRETE MATH DAY Student financial support May 12-13 (Friday-Saturday) to travel to Ottawa Plenary Speakers: Submission of abstracts Bill Cook, Anthony Evans, Jonathan Jedwab, Pierre Leroux, Kieka for contributed talks Mynhardt Workshop on COVERING ARRAYS May 14-16 (Sunday-Tuesday) Plenary Speakers: Rick Brewster, Charlie Colbourn, Peter Gibbons, Alan Hartman, Brett Stevens, Doug Stinson. Thank you!