The Crossing Number of K_{11} is 100

Shengjun Pan

Supervisor: Bruce Richter

Department of Combinatorics and Optimization University of Waterloo

April 21, 2006

- Introduction
 - Definitions
 - Guy's Conjecture
- 2 Theory Properties
 - Good Drawing
 - Properties
 - Containing Arguments
- Algorithm Generating Drawings
 - Basic Idea
 - Generating New Drawings
 - Equivalence of Drawings
- Results
 - Crossing Number of K₁₁
 - ullet Optimal Drawings of K_9 and K_{10}
- Seferences

Definitions

Definition of Drawing

Definition Vertices → Points Edges ---- Simple Curves Figure: Drawings of K_4

Definition of Crossing Number

Definition

cr(G): minimum number of edge crossings over all drawings of G.

Example: $cr(K_4) = 0$, $cr(K_5) = 1$.

Crossing Number of Complete Graphs

Conjecture (Guy's Conjecture)

$$cr(K_n) \stackrel{?}{=} Z(n),$$

where

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$

Conjecture (Guy's Conjecture)

$$cr(K_n) \stackrel{?}{=} Z(n),$$

where

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$

- True for $n \leq 10$:
- For n = 4, 5, 6, 7, 8, there are 1, 1, 5, 3 optimal drawings, respectively.

Guy's Conjecture

Cylindrical Drawings of K_n

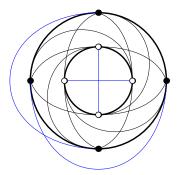


Figure: A cylindrical drawing of K_8 [Richter and Thomassen]

Cylindrical Drawings of K_n

Cylindrical drawings $\implies cr(K_n) \leqslant Z(n)$.

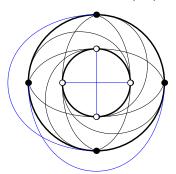


Figure: A cylindrical drawing of K_8 [Richter and Thomassen]

- Introduction
 - Definitions
 - Guy's Conjecture
- 2 Theory Properties
 - Good Drawing
 - Properties
 - Containing Arguments
- 3 Algorithm Generating Drawings
 - Basic Idea
 - Generating New Drawings
 - Equivalence of Drawings
- Results
 - Crossing Number of K_{11}
 - \bullet Optimal Drawings of K_9 and K_{10}
- 5 References

Results

References

Definition (Good Drawing)

A drawing without forbidden crossings.

Figure: Forbidden crossings

Good Drawing

Theorem

Any optimal drawing is good.

Good Drawing

Theorem

Any optimal drawing is good.

Figure: Forbidden crossings

Good Drawing

Theorem

Any optimal drawing is good.

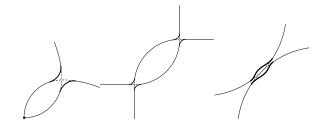


Figure: Eliminating forbidden crossings

Parity Property

Theorem (Kleitman)

For an **odd** n, in any good drawing of K_n ,

$$\#crossings \equiv Z(n) \pmod{2}$$
.

Lemma (Lower Bound)

For n > 4,

$$cr(K_n) \geqslant \left\lceil \frac{n}{n-4} \cdot cr(K_{n-1}) \right\rceil.$$

Lemma (Lower Bound)

For n > 4,

$$cr(K_n) \geqslant \left\lceil \frac{n}{n-4} \cdot cr(K_{n-1}) \right\rceil.$$

Corollary

For an odd n,

$$cr(K_n) = Z(n) \implies cr(K_{n+1}) = Z(n+1).$$

Counting Properties

Lemma (Sub-drawing)

Any good drawing D_n of K_n contains a good drawing D_{n-1} of K_{n-1} such that

$$cr(D_{n-1}) \leqslant cr(D_n) - \lceil 4cr(D_n)/n \rceil$$
.

Containing Argument 1

Theorem (Containing-1)

For $n \leq 8$, any optimal drawing of K_n contains an optimal drawing of K_{n-1} .

n	4	5	6	7	8	9
$cr(K_n)$	0	1	3	9	18	36
$cr(D_{n-1}) \leqslant$	0	0	1	3	9	20 > 18

Containing Argument 2

Theorem (Containing-2)

Any optimal drawing of K_9 contains a good drawing of K_8 with at most 20 crossings, which contains an optimal drawing of K_7 .

18	19	20			
$ \begin{bmatrix} 18 \cdot 4/8 \end{bmatrix} = 9 $	$ \begin{bmatrix} 19 \cdot 4/8 \\ 19 - 10 \\ 9 \end{bmatrix} = 10 $	$\begin{bmatrix} 20 \cdot 4/8 \end{bmatrix} = 10$			
18 - 9 = 9	19 - 10 = 9	$\begin{array}{cccc} 20 - 10 & = & 10 \\ & \rightarrow & 0 \end{array}$			
		\rightarrow 9			

Containing Argument 3

Theorem (Containing-3)

Any good drawing of K_{11} with less than Z(11) = 100 crossings, if there is any,

contains a good drawing of K_{10} with at most 62 crossings, which contains an optimal drawing of K_9 .

96			98		
「96 · 4/11 ॊ	=	35	「98 · 4/11 ॊ	=	36
96 — 35	=	61	98 – 36	=	62

ı									
	60			61			62		
	「60 · 4/10 ॊ	=	24	$\lceil 61 \cdot 4/10 \rceil$	=	25	「62 · 4/11 ॊ	=	25
	60 - 24	=	36	61 - 25	=	36	62 - 25	=	37
								\rightarrow	36
								=	

Introduction

Outline

- Definitions
- Guy's Conjecture
- 2 Theory Properties
 - Good Drawing
 - Properties
 - Containing Arguments
- Algorithm Generating Drawings
 - Basic Idea
 - Generating New Drawings
 - Equivalence of Drawings
- 4 Results
 - Crossing Number of K_{11}
 - ullet Optimal Drawings of K_9 and K_{10}
- 6 References

References

 \mathcal{D}_n^c : set of all good drawings of K_n with c crossings.

$$\begin{array}{cccc} \mathcal{D}_{4}^{0} & \to & \mathcal{D}_{5}^{1} \to \mathcal{D}_{6}^{3} \to \mathcal{D}_{7}^{9} \\ & \to & \mathcal{D}_{8}^{18} \cup \mathcal{D}_{8}^{19} \cup \mathcal{D}_{8}^{20} \\ & \to & \mathcal{D}_{9}^{36} \\ & \to & \mathcal{D}_{10}^{60} \cup \mathcal{D}_{10}^{61} \cup \mathcal{D}_{10}^{62} \\ & \to & \mathcal{D}_{11}^{\leqslant 98} \end{array}$$

Basic Idea - Generating Drawings by Computer

 \mathcal{D}_n^c : set of all good drawings of K_n with c crossings.

$$\begin{array}{cccc} \mathcal{D}_{4}^{0} & \to & \mathcal{D}_{5}^{1} \to \mathcal{D}_{6}^{3} \to \mathcal{D}_{7}^{9} \\ & \to & \mathcal{D}_{8}^{18} \cup \mathcal{D}_{8}^{19} \cup \mathcal{D}_{8}^{20} \\ & \to & \mathcal{D}_{9}^{36} \\ & \to & \mathcal{D}_{10}^{60} \cup \mathcal{D}_{10}^{61} \cup \mathcal{D}_{10}^{62} \\ & \to & \mathcal{D}_{11}^{\leqslant 98} \end{array}$$

Expected: $\mathcal{D}_{11}^{\leqslant 98} = \varnothing$.

Outline

 D_n : A good drawing of K_n

- D_{n+1} : A good drawing of K_{n+1} ,

 which contains D_n , and

 $cr(D_{n+1}) \leqslant cr(K_{n+1}) + \delta$, $\delta \in \{0,1,2\}$.

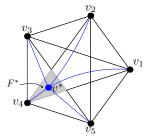


Figure: $D_5 \longrightarrow D_6$

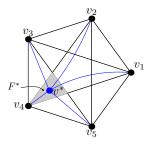


Figure: $D_5 \longrightarrow D_6$

New edges:

• walks in the dual graph,

$$W_i$$
, $i = 1, 2, \dots, n$;

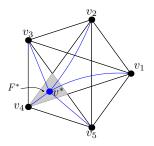


Figure: $D_5 \longrightarrow D_6$

New edges:

- walks in the dual graph, W_i , $i = 1, 2, \dots, n$;
- $len(W_i) \leqslant d(F^*, v_i) + \delta$.

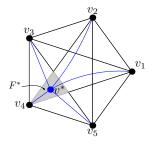


Figure: $D_5 \longrightarrow D_6$

New edges:

- walks in the dual graph, W_i , $i = 1, 2, \cdots, n$;
- $len(W_i) \leq d(F^*, v_i) + \delta$.

Claim: For $\delta \in \{0,1,2\}$, W_i 's are *paths* in the dual graph.

Induced Planar Graph

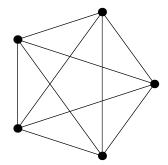


Figure: A good drawing of K_5

Induced Planar Graph

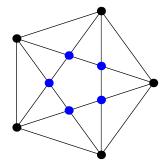


Figure: Induced planar graph

Proof of W_i 's being Paths

Lemma (3-connectivity)

For any good drawing of K_n , $n \ge 4$, the induced planar graph is 3-connected.

Proof of W_i 's being Paths

Lemma (3-connectivity)

For any good drawing of K_n , $n \ge 4$, the induced planar graph is 3-connected.

⇒ the dual graph is simple,

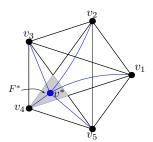


Figure: $D_5 \longrightarrow D_6$

Lemma (3-connectivity)

For any good drawing of K_n , $n \ge 4$, the induced planar graph is 3-connected.

- ⇒ the dual graph is simple,
- \implies len $(W_i) \geqslant d(F^*, v_i) + 3$,

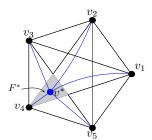


Figure: $D_5 \longrightarrow D_6$

Lemma (3-connectivity)

For any good drawing of K_n , $n \ge 4$, the induced planar graph is 3-connected.

- ⇒ the dual graph is simple,
- \implies $len(W_i) \geqslant d(F^*, v_i) + 3$,
- \implies W_i 's are paths.

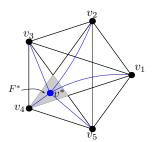


Figure: $D_5 \longrightarrow D_6$

Equivalence of Drawings

Problem 2: Checking Equivalence of Drawings

?

Equivalence of Drawings

Problem 2: Checking Equivalence of Drawings

?

• The induced planar graphs are 3-connected,

Equivalence of Drawings

Problem 2: Checking Equivalence of Drawings

?

- The induced planar graphs are 3-connected,
- simple and 3-connected planar graph has a unique embedding.

Problem 2: Checking Equivalence of Drawings

- The induced planar graphs are 3-connected,
- simple and 3-connected planar graph has a unique embedding.

```
\implies checking <u>graph isomorphism</u>.
(nauty = no automorphisms, yes?)
```

Outline

Proof of $cr(K_{11}) = 100$

$$\begin{array}{cccc} \mathcal{D}_{4}^{0} & \to & \mathcal{D}_{5}^{1} \to \mathcal{D}_{6}^{3} \to \mathcal{D}_{7}^{9} \\ & \to & \mathcal{D}_{8}^{18} \cup \mathcal{D}_{8}^{19} \cup \mathcal{D}_{8}^{20} \\ & \to & \mathcal{D}_{9}^{36} \\ & \to & \mathcal{D}_{10}^{60} \cup \mathcal{D}_{10}^{61} \cup \mathcal{D}_{10}^{62} \\ & \to & \mathcal{D}_{11}^{\leqslant 98} \end{array}$$

Results

Proof of $cr(K_{11}) = 100$

$$\begin{array}{cccc} \mathcal{D}_{4}^{0} & \to & \mathcal{D}_{5}^{1} \to \mathcal{D}_{6}^{3} \to \mathcal{D}_{7}^{9} \\ & \to & \mathcal{D}_{8}^{18} \cup \mathcal{D}_{8}^{19} \cup \mathcal{D}_{8}^{20} \\ & \to & \mathcal{D}_{9}^{36} \\ & \to & \mathcal{D}_{10}^{60} \cup \mathcal{D}_{10}^{61} \cup \mathcal{D}_{10}^{62} \\ & \to & \mathcal{D}_{11}^{898} \end{array}$$

Output: $\mathcal{D}_{11}^{\leqslant 98} = \varnothing$.

Optimal Drawings of K_9 and K_{10}

Number of Optimal Drawings

n	3	4	5	6	7	8	9	10
$cr(K_n)$	0	0	1	3	9	18	36	60
#drawings	1	1	1	1	5	3		

Optimal Drawings of K_9 and K_{10}

Number of Optimal Drawings

n	3	4	5	6	7	8	9	10
$cr(K_n)$	0	0	1	3	9	18	36	60
#drawings	1	1	1	1	5	3	3080	5679

- - Definitions
 - Guy's Conjecture
- - Good Drawing
 - Properties
 - Containing Arguments
- - Basic Idea
 - Generating New Drawings
 - Equivalence of Drawings
- - Crossing Number of K_{11}
 - Optimal Drawings of K_9 and K_{10}
- References

References

A. Brodsky, S. Durocher, and E. Gethner. The rectilinear crossing number of K_{10} is 62. eprint arXiv:cs.DM/0009023/, September 2000.

R Diestel

Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin · Heidelberg, 3rd edition, 2005.

R. K. Guy.

Crossing numbers of graphs.

In Graph Theory and Applications, volume 303 of Lecture Notes in Mathematics, pages 111-124. Springer-Verlag, Berlin · Heidelberg · New York, May 1972.

D. I. Kleitman

A note on the parity of the numbers of crossings of a graph.

J. Combin. Theory, Ser. B, 21:88-89, 1976.

B. Mohar and C. Thomassen.

Graphs on Surfaces.

The Johns Hopkins University Press, Baltimore and London, 2001.

R B Richter and C Thomassen

Relations between crossing numbers of complete and complete bipartite graphs.

Amer. Math. Monthly, 104(2):131-137, 1997. 4□ > 4同 > 4 = > 4 = > ■ 900