

On geodesics in random regular graphs

Carlos Hoppen (University of Waterloo)
Pawel Pralat (University of Waterloo)
Ontario Combinatorics Workshop 2006

Outline

- Probabilistic preliminaries
- Random regular graphs
- Geodesics in random regular graphs

Probabilistic preliminaries

Probability Space:

$$\Omega$$
 = (S, Prob)

S finite, Prob: S
$$\rightarrow$$
 [0,1], $\Sigma_{s \in S}$ Prob(s) = 1

For instance, $\mathcal{G}_{n,p}$:

S = {labelled graphs on n vertices}

$$Prob(G) = p^{|E(G)|} (1-p)^{n(n-1)/2 - |E(G)|}, 0 \le p \le 1$$

The probability space $G_{n,p}$

ⁿ Consider the probability space $\mathcal{G}_{5,1/2}$:

Probabilistic preliminaries

_n Event in $\Omega = (S, Prob)$:

Subset E of S

E = {labelled 3-regular graphs on n vertices}

Random variable over Ω:

A function $X : S \rightarrow \mathbf{R}$

$$X(G) = \begin{cases} 1, & \text{if G is 3-regular} \\ 0, & \text{otherwise} \end{cases}$$

Probabilistic preliminaries

An event A in $\mathcal{G}_{n,p}$ holds asymptotically almost surely (a.a.s.) if

$$\lim_{n\to\infty} Prob(A) = 1$$

For example, if
$$A = \{K_n\}$$
 with p<1,

$$Prob(A) = p^{n(n-1)/2}$$

Probabilistic preliminaries

Expected value of X:

$$E(X) = \sum_{s \in S} X(s) \text{ Prob}(s)$$

Nariance of X:

$$Var(X) = E(|X-E(X)|^2)$$

Basic inequalities

Markov's inequality:

Prob($x \ge t$) $\le E(x)/t$ (Markov)

If X is a non-negative random variable and t>0, then

Chebyshev's inequality:

Chebyshev's inequality:

Note of the problem of the problem in t

Proof: is a random variable and t>0, then $Prob(|X - E(X)| \ge t) \le Var(X)/t^2$

 $\Sigma_{s \in S} X(s) \text{ Prob}(s)$

 $\begin{array}{l} \text{Prob}(\coprod X \sum_{X(s) \geq t} E(X) \downarrow_{X(s) \geq t} P \text{Fob}(S) \coprod_{X(s) < t} E(X) \downarrow_{X(s) < t} P \text{Fob}(S) \\ & \leq E(|X - E(X)|^2)/t^2 = Var(X)/t^2 \end{array}$

 \geq t Prob(X \geq t)

Random regular graphs

- For regular graphs, edges do not appear independently.
- n Consider $\mathcal{G}_{5,2}$

Random regular graphs

- $_{ extstyle extstyle n}$ We consider the probability space of pairings $\mathscr{P}_{\mathsf{n,d}}$
- All simple graphs correspond to the same number of pairings
- If A is an event in $\mathcal{G}_{n,d}$ and A' is the set of pairings corresponding to the graphs in A, then $\operatorname{Prob}_{\mathcal{G}_{n,d}}(A) = \operatorname{Prob}_{\mathcal{P}_{n,d}}(A')/\operatorname{Prob}\left(\operatorname{Simple}\right)$

Prob (Simple)
$$> k(d) > 0$$
, so

a.a.s in
$$\mathcal{P}_{\sf n,d} \Rightarrow$$
 a.a.s in $\mathcal{G}_{\sf n,d}$

•

Geodesics

A geodesic in a graph is a shortest path between two of its vertices.

Theorem 1: If u, v are vertices in $G \in \mathcal{G}_{n,d}$, where d is a constant, and ω is a function of n satisfying $\lim_{n\to\infty}\omega=\infty$, then, a.a.s.,

$$\log_{d-1} n - \omega < \operatorname{dist}(u,v) < \log_{d-1} n + \omega$$

Proof of Theorem 1

n Lower bound: $\log{d-1} n - \omega < \text{dist}(u,v)$ a.a.s.

To prove: Prob (dist(u,v) $\leq \log_{d-1} n - \omega$) $\rightarrow 0$

X_I: random variable counting the number of uv-paths of length at most I in G.

By Markov's inequality with t=1, $Prob(X_1 \ge 1) \le E(X_1)$

So, $Prob(X_1=0) = Prob(X_1<1) \ge 1 - E(X_1)$

Proof of Theorem 1

To prove: $E(X_I) \rightarrow 0$ when $I = log_{d-1}n - \omega$

 \mathbf{P}_{k} : family of uv-paths of length k in K_{n}

For $P \in \mathbf{P}_{k'}$

$$X_P^k = \begin{cases} 1, & \text{if } E(P) \subseteq E(G) \\ 0, & \text{otherwise} \end{cases}$$

So,

$$\begin{aligned} X_l &= \Sigma_{k=1..l} \; \Sigma_{P \in \mathbf{P}_k} \; X_P^k \\ E(X_l) &= \Sigma_{k=1..l} \; \Sigma_{P \in \mathbf{P}_k} \; E(X_P^k) \end{aligned}$$

Proof of Theorem 1

To prove: $E(X_I) \rightarrow 0$ when $I = log_{d-1}n - \omega$

$$E(X_{l}) = \sum_{k=1..l} \sum_{P \in P_{k}} E(X_{P}^{k})$$

$$E(X_P^k) = Prob(X_P^k = 1) \sim d/n((d-1)/n)^{k-1}$$

$$|\mathbf{P}_{k}| = C_{n-2,k-1} (k-1)!$$

Thus,

$$E(X_{l}) = \Sigma_{k=1..l} |\mathbf{P}_{k}| E(X_{p}^{k}) \sim \Sigma_{k=1}^{l} d/n (d-1)^{k-1}$$
$$= O((d-1)^{l}/n) = O((d-1)^{-\omega}) \to 0$$

Proof of Theorem 1

Lower bound established!

Proof of Theorem 1

n Upper bound: $dist(u,v) < log{d-1}n + \omega$ a.a.s.

To prove: Prob (dist(u,v) $\geq \log_{d-1} n + \omega$) $\rightarrow 0$

X_I: random variable counting the number of uv-paths of length at most I in G.

By Chebyshev's inequality with $t=E(X_1)$,

 $Prob(X_1=0) \le Prob(|X_1 - E(X_1)| \ge E(X_1)) \le Var(X_1)/E(X_1)^2$

A similar result

Theorem 2:

Let u, v be vertices in $G \in \mathcal{G}_{n,d}$, where d is a constant. Consider a function ω of n satisfying $\lim_{n\to\infty}\omega=\infty$.

Then a.a.s., if P, Q are two geodesics between u and v with midpoints p, q, respectively,

$$\log_{d-1} n - \omega < \operatorname{dist}(u,v) < \log_{d-1} n + \omega$$

Probability of a single geodesic

Theorem 3:

The probability that two vertices u, v in $G \in \mathcal{G}_{n,d}$, where d is a constant, are joined by exactly one geodesic is asymptotic to

$$\sum_{k=-\infty}^{\infty} d(d-1)^{(2k-2\gamma-2)} e^{\left(-\frac{d(d-1)^{(2k-2\gamma-1)}}{d-2}\right) \left(1+(d-1)e^{(-d(d-1)^{(2k-2\gamma-1)}}\right)}$$

Conclusion

Can we use basic probabilistic tools to derive interesting combinatorial results?