Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Sylvia Boyd Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

April 20, 2006

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

	Ear Decompositions	Min-cut Cactii	
Outline			

1 Introduction

- 2 Ear Decompositions
- 3 Necklaces
- 4 Min-cut Cactii

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Introduction	Ear Decompositions	Min-cut Cactii	
Outline			

- 2 Ear Decompositions
- 3 Necklaces
- 4 Min-cut Cactii

University of Ottawa - S.I.T.E.

< 🗇 > <

Sylvia Boyd, Paul Elliott-Magwood

Introduction	Ear Decompositions	Min-cut Cactii	
Preliminar	ies		

• $K_n = (V, E)$ - the complete undirected graph on *n* vertices

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

O > <
 O >

Introduction	Ear Decompositions	Min-cut Cactii	
Dulluin	at a c		
Prelimina	ries		

K_n = (V, E) - the complete undirected graph on n vertices
 c : E → ℝ_{≥0} - a cost function

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

A B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Ear Decompositions	Min-cut Cactii	
Prelimina	ries		

•
$$K_n = (V, E)$$
 - the complete undirected graph on *n* vertices

•
$$c: E \to \mathbb{R}_{\geq 0}$$
 - a cost function

Definition

A multigraph G is 2-edge-connected if, for every pair, $\{u, v\}$, of distinct vertices of G, there exist two edge-disjoint $\{u, v\}$ -paths.

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called 2EC(c)) is the problem of finding a 2-edge-connected spanning multigraph of K_n which has minimum total edge-cost with respect to c.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called 2EC(c)) is the problem of finding a 2-edge-connected spanning multigraph of K_n which has minimum total edge-cost with respect to c.

Also called Network Survivability Problem

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called 2EC(c)) is the problem of finding a 2-edge-connected spanning multigraph of K_n which has minimum total edge-cost with respect to c.

- Also called Network Survivability Problem
- 2EC(c) is NP-complete!

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Metric Costs

Definition

A cost function c is metric if for every distinct triple, $u,v,w \in V$, we have that

 $c_{uv} \leq c_{uw} + c_{wv}$.

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

University of Ottawa - S.I.T.E.

< 冊

Metric Costs

Definition

A cost function c is *metric* if for every distinct triple, $u, v, w \in V$, we have that

$$c_{uv} \leq c_{uw} + c_{wv}.$$

The best approximation algorithm (Frederickson and Ja'Ja, 1982) for 2EC(c) when c is metric has a performance guarantee of $\frac{3}{2}$.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

A Family of Optimal Solutions

Theorem (Monma, Munson, and Pulleyblank, 1990)

If c is a metric cost function then there is an optimal solution to 2EC(c) which is simple and

- is edge-minimally 2-edge-connected,
- is 2-vertex-connected,
- every vertex has degree 2 or 3, and
- removing any pair of edges leaves a bridge in one of the resulting components.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

A Family of Optimal Solutions

Theorem (Monma, Munson, and Pulleyblank, 1990)

If c is a metric cost function then there is an optimal solution to 2EC(c) which is simple and

- is edge-minimally 2-edge-connected,
- is 2-vertex-connected,
- every vertex has degree 2 or 3, and
- removing any pair of edges leaves a bridge in one of the resulting components.

Let $\ensuremath{\mathcal{M}}$ denote the set of all graphs which have the above properties.

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Some Graphs in $\ensuremath{\mathcal{M}}$

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Some Graphs in $\ensuremath{\mathcal{M}}$

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

We want to learn more about the graphs in \mathcal{M} and their construction in the hopes that we can find a new approximation algorithm for 2EC(c) when c is metric.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
A B			
Outline			

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

< 17 >

Ear Decompositions

Definition

A graph G has an *ear decomposition* if there is a sequence of subgraphs, H_0, H_1, \ldots, H_k , of G such that

- *H*₀ is a cycle,
- $H_k = G$, and
- for each 0 ≤ i ≤ k − 1, H_{i+1} is obtained by adding a path, P_i, of G to H_i where the endpoints of P_i are the only vertices of H_i in P_i.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Ear Decompositions

Definition

A graph G has an *ear decomposition* if there is a sequence of subgraphs, H_0, H_1, \ldots, H_k , of G such that

■ *H*₀ is a cycle,

•
$$H_k = G$$
, and

• for each $0 \le i \le k - 1$, H_{i+1} is obtained by adding a path, P_i , of G to H_i where the endpoints of P_i are the only vertices of H_i in P_i .

Theorem (Whitney, 1932)

A graph G is 2-edge-connected if and only if it has an ear decomposition.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

An Example of an Ear Decomposition

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

An Example of an Ear Decomposition

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

An Example of an Ear Decomposition

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Ear Decompositions of Graphs in $\mathcal M$

Theorem

Let G be 2-edge-connected and let H_0, H_1, \ldots, H_k be an ear decomposition of G. $G \in \mathcal{M}$ if and only if $H_i \in \mathcal{M}$ for every $0 \le i \le k$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへの

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

Ear Decompositions of Graphs in $\mathcal M$

Theorem

Let G be 2-edge-connected and let H_0, H_1, \ldots, H_k be an ear decomposition of G. $G \in \mathcal{M}$ if and only if $H_i \in \mathcal{M}$ for every $0 \le i \le k$.

Let $G \in \mathcal{M}$ and let $P_0, P_1, \ldots, P_{k-1}$ be the paths in an ear decompositon of G. For each $0 \le i \le k-1$

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Ear Decompositions of Graphs in $\mathcal M$

Theorem

Let G be 2-edge-connected and let H_0, H_1, \ldots, H_k be an ear decomposition of G. $G \in \mathcal{M}$ if and only if $H_i \in \mathcal{M}$ for every $0 \le i \le k$.

Let $G \in \mathcal{M}$ and let $P_0, P_1, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \le i \le k-1$

• the endpoints of P_i must be distinct in H_i ,

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Ear Decompositions of Graphs in $\ensuremath{\mathcal{M}}$

Theorem

Let G be 2-edge-connected and let H_0, H_1, \ldots, H_k be an ear decomposition of G. $G \in \mathcal{M}$ if and only if $H_i \in \mathcal{M}$ for every $0 \le i \le k$.

Let $G \in \mathcal{M}$ and let $P_0, P_1, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \le i \le k-1$

- the endpoints of P_i must be distinct in H_i ,
- the endpoints of P_i must have degree 2 in H_i , and

Sylvia Boyd, Paul Elliott-Magwood

Ear Decompositions of Graphs in $\ensuremath{\mathcal{M}}$

Theorem

Let G be 2-edge-connected and let H_0, H_1, \ldots, H_k be an ear decomposition of G. $G \in \mathcal{M}$ if and only if $H_i \in \mathcal{M}$ for every $0 \le i \le k$.

Let $G \in \mathcal{M}$ and let $P_0, P_1, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \le i \le k-1$

- the endpoints of P_i must be distinct in H_i ,
- the endpoints of P_i must have degree 2 in H_i , and

$$|P_i| \geq 3.$$

Sylvia Boyd, Paul Elliott-Magwood

	Ear Decompositions	Necklaces	Min-cut Cactii	
Outline				

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

< 🗇 🕨 <

Min-cuts in a Graph

Definition

In a graph which is k-edge-connected but not (k+1)-edge-connected, a *min-cut* is any $\delta(S)$ containing exactly k edges.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Necklaces	Min-cut Cactii	
Necklaces	5			

Definition

A necklace of a graph, G, which has a min-cut of size 2 is a partition $(V_0, V_1, \ldots, V_{k-1})$ of V such that for every $0 \le i \le k-1$,

- $\delta_G(V_i)$ is a min-cut,
- the edges of δ_G(V_i) have their other endpoints in V_{i-1} and V_{i+1} respectively, and
- there is no finer partition with these properties.

We call V_0, \ldots, V_{k-1} the *beads* of the necklace.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

An Example of a Necklace

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Properties of Necklaces

Proposition

Let G be a graph with a min-cut $\delta_G(S)$ of size 2. Then S is the union of consecutive beads in some necklace of G.

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Properties of Necklaces

Proposition

Let G be a graph with a min-cut $\delta_G(S)$ of size 2. Then S is the union of consecutive beads in some necklace of G.

Proposition

If $G \in M$ then every edge of G is an inter-bead edge of a unique necklace and every necklace has at least three beads.

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Ear Decompositions and Necklaces of Graphs in $\ensuremath{\mathcal{M}}$

Theorem

Let $H \in \mathcal{M}$ with distinct vertices, u and v, each of degree 2. Let P be a path of length at least 3 and let G be the graph obtained by identifying the endpoints of P with u and v. $G \in \mathcal{M}$ if and only if for any necklace $(V_0, V_1, \ldots, V_{k-1})$ of H where $u \in V_i$ and $v \in V_i$ we have that $i - j \neq \pm 1 \mod k$ and $i - j \neq \pm 2 \mod k$.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Adding an Ear to a Necklace

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Adding an Ear to a Necklace

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
Outline			

- 2 Ear Decompositions
- 3 Necklaces
- 4 Min-cut Cactii

5 Summary

Sylvia Boyd, Paul Elliott-Magwood

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

< 🗇 🕨 <

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
Cactii			

A *cactus* is a 2-edge-connected multigraph where every edge is in a unique cycle.

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
Cactii			

A *cactus* is a 2-edge-connected multigraph where every edge is in a unique cycle.

the min-cuts in a cactus consist of pairs of edges in the same cycle

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
Cactii			

A *cactus* is a 2-edge-connected multigraph where every edge is in a unique cycle.

- the min-cuts in a cactus consist of pairs of edges in the same cycle
- the min-cuts in a graph $G \in \mathcal{M}$ consist of pairs of inter-bead edges in the same necklace

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	
Cactii			

A *cactus* is a 2-edge-connected multigraph where every edge is in a unique cycle.

- the min-cuts in a cactus consist of pairs of edges in the same cycle
- the min-cuts in a graph $G \in \mathcal{M}$ consist of pairs of inter-bead edges in the same necklace
- Dinits, Karzanov, and Lomonosov (1976) used a cactus to describe min-cuts in a graph

Sylvia Boyd, Paul Elliott-Magwood

A Graph and its Min-cut Cactus

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

A Graph and its Min-cut Cactus

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Constructing Graphs in $\mathcal M$

Proposition

Let $H \in \mathcal{M}$ with min-cut cactus $\mathcal{H}(H)$. Let u and v be vertices in distinct nodes of degree 2 of $\mathcal{H}(H)$ and let Q be a shortest path between them in $\mathcal{H}(H)$. Add a path of length at least 3 with endpoints u and v to obtain G. $G \in \mathcal{M}$ if and only if Q does not intersect any cycle of $\mathcal{H}(H)$ in exactly one or two edges.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

Bounding the Number of Edges

Proposition

If $G \in \mathcal{M}$ has n vertices and m edges then

$$m<rac{6}{5}n.$$

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	Summary
Outline			

1 Introduction

- 2 Ear Decompositions
- 3 Necklaces
- 4 Min-cut Cactii

↓ ৰ 🗇 ৮ ৰ ছ ৮ ৰ ছ ৮ ৰ ছ 🔊 ৭.ে University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

	Ear Decompositions	Min-cut Cactii	Summary
C			
Summary			

・ロ・・西・・ヨ・・ヨ・ クへぐ

University of Ottawa - S.I.T.E.

Sylvia Boyd, Paul Elliott-Magwood

	Ear Decompositions	Min-cut Cactii	Summary
Summary			

For every metric c, 2EC(c) has an optimal solution in \mathcal{M}

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	Summary
Summany			
Summary			

- For every metric c, 2EC(c) has an optimal solution in \mathcal{M}
- \blacksquare Graphs in $\mathcal M$ can be constructed by adding ears

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.

	Ear Decompositions	Min-cut Cactii	Summary
Summary			

- For every metric c, 2EC(c) has an optimal solution in \mathcal{M}
- \blacksquare Graphs in $\mathcal M$ can be constructed by adding ears
- The min-cut cactus tells us whether or not adding a certain ear will give a graph in *M*

	Ear Decompositions	Min-cut Cactii	Summary
Summary			

- For every metric c, 2EC(c) has an optimal solution in \mathcal{M}
- \blacksquare Graphs in $\mathcal M$ can be constructed by adding ears
- The min-cut cactus tells us whether or not adding a certain ear will give a graph in *M*
- The min-cut cactus can be easily updated

	Ear Decompositions	Min-cut Cactii	Summary
Summary			

- For every metric c, 2EC(c) has an optimal solution in \mathcal{M}
- \blacksquare Graphs in $\mathcal M$ can be constructed by adding ears
- The min-cut cactus tells us whether or not adding a certain ear will give a graph in *M*
- The min-cut cactus can be easily updated
- Thank you for attending my talk!

Sylvia Boyd, Paul Elliott-Magwood

University of Ottawa - S.I.T.E.