Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Sylvia Boyd Paul Elliott-Magwood
University of Ottawa - S.I.T.E.

April 20, 2006

Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Preliminaries

■ $K_{n}=(V, E)$ - the complete undirected graph on n vertices

Preliminaries

- $K_{n}=(V, E)$ - the complete undirected graph on n vertices

■ c: $E \rightarrow \mathbb{R}_{\geq 0}$ - a cost function

[^0]
Preliminaries

■ $K_{n}=(V, E)$ - the complete undirected graph on n vertices
■ c: $E \rightarrow \mathbb{R}_{\geq 0}$ - a cost function

Definition

A multigraph G is 2-edge-connected if, for every pair, $\{u, v\}$, of distinct vertices of G, there exist two edge-disjoint $\{u, v\}$-paths.

[^1]
The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called $2 \mathrm{EC}(c)$) is the problem of finding a 2-edge-connected spanning multigraph of K_{n} which has minimum total edge-cost with respect to c.

The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called $2 \mathrm{EC}(c)$) is the problem of finding a 2-edge-connected spanning multigraph of K_{n} which has minimum total edge-cost with respect to c.

- Also called Network Survivability Problem

The Problem

Definition

The Minimum Cost 2-edge-connected Spanning Subgraph Problem with respect to c (henceforth called $2 \mathrm{EC}(c)$) is the problem of finding a 2-edge-connected spanning multigraph of K_{n} which has minimum total edge-cost with respect to c.

- Also called Network Survivability Problem
- $2 \mathrm{EC}(c)$ is NP-complete!

An Example of 2EC

An Example of 2EC

Metric Costs

Definition

A cost function c is metric if for every distinct triple, $u, v, w \in V$, we have that

$$
c_{u v} \leq c_{u w}+c_{w v}
$$

Metric Costs

Definition

A cost function c is metric if for every distinct triple, $u, v, w \in V$, we have that

$$
c_{u v} \leq c_{u w}+c_{w v}
$$

The best approximation algorithm (Frederickson and Ja'Ja, 1982) for $2 \mathrm{EC}(c)$ when c is metric has a performance guarantee of $\frac{3}{2}$.

A Family of Optimal Solutions

Theorem (Monma, Munson, and Pulleyblank, 1990)

If c is a metric cost function then there is an optimal solution to $2 E C(c)$ which is simple and

- is edge-minimally 2-edge-connected,
- is 2-vertex-connected,
- every vertex has degree 2 or 3 , and
- removing any pair of edges leaves a bridge in one of the resulting components.

A Family of Optimal Solutions

Theorem (Monma, Munson, and Pulleyblank, 1990)

If c is a metric cost function then there is an optimal solution to $2 E C(c)$ which is simple and

- is edge-minimally 2-edge-connected,
- is 2-vertex-connected,
- every vertex has degree 2 or 3 , and
- removing any pair of edges leaves a bridge in one of the resulting components.

Let \mathcal{M} denote the set of all graphs which have the above properties.

Some Graphs in \mathcal{M}

Some Graphs in \mathcal{M}

Some Graphs in \mathcal{M}

Purpose of our Research

We want to learn more about the graphs in \mathcal{M} and their construction in the hopes that we can find a new approximation algorithm for $2 \mathrm{EC}(c)$ when c is metric.

[^2]
Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Ear Decompositions

Definition

A graph G has an ear decomposition if there is a sequence of subgraphs, $H_{0}, H_{1}, \ldots, H_{k}$, of G such that

- H_{0} is a cycle,
- $H_{k}=G$, and

■ for each $0 \leq i \leq k-1, H_{i+1}$ is obtained by adding a path, P_{i}, of G to H_{i} where the endpoints of P_{i} are the only vertices of H_{i} in P_{i}.

Ear Decompositions

Definition

A graph G has an ear decomposition if there is a sequence of subgraphs, $H_{0}, H_{1}, \ldots, H_{k}$, of G such that

- H_{0} is a cycle,
- $H_{k}=G$, and

■ for each $0 \leq i \leq k-1, H_{i+1}$ is obtained by adding a path, P_{i}, of G to H_{i} where the endpoints of P_{i} are the only vertices of H_{i} in P_{i}.

Theorem (Whitney, 1932)

A graph G is 2-edge-connected if and only if it has an ear decomposition.

An Example of an Ear Decomposition

An Example of an Ear Decomposition

An Example of an Ear Decomposition

Ear Decompositions of Graphs in \mathcal{M}

Theorem

Let G be 2-edge-connected and let $H_{0}, H_{1}, \ldots, H_{k}$ be an ear decomposition of $G . G \in \mathcal{M}$ if and only if $H_{i} \in \mathcal{M}$ for every $0 \leq i \leq k$.

Ear Decompositions of Graphs in \mathcal{M}

Theorem

Let G be 2-edge-connected and let $H_{0}, H_{1}, \ldots, H_{k}$ be an ear decomposition of $G . G \in \mathcal{M}$ if and only if $H_{i} \in \mathcal{M}$ for every $0 \leq i \leq k$.

Let $G \in \mathcal{M}$ and let $P_{0}, P_{1}, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \leq i \leq k-1$

Ear Decompositions of Graphs in \mathcal{M}

Theorem

Let G be 2-edge-connected and let $H_{0}, H_{1}, \ldots, H_{k}$ be an ear decomposition of $G . G \in \mathcal{M}$ if and only if $H_{i} \in \mathcal{M}$ for every $0 \leq i \leq k$.

Let $G \in \mathcal{M}$ and let $P_{0}, P_{1}, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \leq i \leq k-1$

■ the endpoints of P_{i} must be distinct in H_{i},

Ear Decompositions of Graphs in \mathcal{M}

Theorem

Let G be 2-edge-connected and let $H_{0}, H_{1}, \ldots, H_{k}$ be an ear decomposition of $G . G \in \mathcal{M}$ if and only if $H_{i} \in \mathcal{M}$ for every $0 \leq i \leq k$.

Let $G \in \mathcal{M}$ and let $P_{0}, P_{1}, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \leq i \leq k-1$

■ the endpoints of P_{i} must be distinct in H_{i},
■ the endpoints of P_{i} must have degree 2 in H_{i}, and

Ear Decompositions of Graphs in \mathcal{M}

Theorem

Let G be 2-edge-connected and let $H_{0}, H_{1}, \ldots, H_{k}$ be an ear decomposition of $G . G \in \mathcal{M}$ if and only if $H_{i} \in \mathcal{M}$ for every $0 \leq i \leq k$.

Let $G \in \mathcal{M}$ and let $P_{0}, P_{1}, \ldots, P_{k-1}$ be the paths in an ear decompostion of G. For each $0 \leq i \leq k-1$

■ the endpoints of P_{i} must be distinct in H_{i},
■ the endpoints of P_{i} must have degree 2 in H_{i}, and

- $\left|P_{i}\right| \geq 3$.

Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Min-cuts in a Graph

Definition

In a graph which is k-edge-connected but not ($k+1$)-edge-connected, a min-cut is any $\delta(S)$ containing exactly k edges.

Necklaces

Definition

A necklace of a graph, G, which has a min-cut of size 2 is a partition $\left(V_{0}, V_{1}, \ldots, V_{k-1}\right)$ of V such that for every
$0 \leq i \leq k-1$,

- $\delta_{G}\left(V_{i}\right)$ is a min-cut,
- the edges of $\delta_{G}\left(V_{i}\right)$ have their other endpoints in V_{i-1} and V_{i+1} respectively, and
- there is no finer partition with these properties.

We call V_{0}, \ldots, V_{k-1} the beads of the necklace.

An Example of a Necklace

Properties of Necklaces

Proposition

 Let G be a graph with a min-cut $\delta_{G}(S)$ of size 2 . Then S is the union of consecutive beads in some necklace of G.
Properties of Necklaces

Proposition

Let G be a graph with a min-cut $\delta_{G}(S)$ of size 2 . Then S is the union of consecutive beads in some necklace of G.

Proposition

If $G \in \mathcal{M}$ then every edge of G is an inter-bead edge of a unique necklace and every necklace has at least three beads.

Ear Decompositions and Necklaces of Graphs in \mathcal{M}

Theorem

Let $H \in \mathcal{M}$ with distinct vertices, u and v, each of degree 2. Let P be a path of length at least 3 and let G be the graph obtained by identifying the endpoints of P with u and $v . G \in \mathcal{M}$ if and only if for any necklace $\left(V_{0}, V_{1}, \ldots, V_{k-1}\right)$ of H where $u \in V_{i}$ and $v \in V_{j}$ we have that $i-j \neq \pm 1 \bmod k$ and $i-j \neq \pm 2 \bmod k$.

Adding an Ear to a Necklace

Adding an Ear to a Necklace

Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Cactii

Definition

A cactus is a 2-edge-connected multigraph where every edge is in a unique cycle.

Cactii

Definition

A cactus is a 2-edge-connected multigraph where every edge is in a unique cycle.

- the min-cuts in a cactus consist of pairs of edges in the same cycle

Cactii

Definition

A cactus is a 2-edge-connected multigraph where every edge is in a unique cycle.

- the min-cuts in a cactus consist of pairs of edges in the same cycle
- the min-cuts in a graph $G \in \mathcal{M}$ consist of pairs of inter-bead edges in the same necklace

Cactii

Definition

A cactus is a 2-edge-connected multigraph where every edge is in a unique cycle.

- the min-cuts in a cactus consist of pairs of edges in the same cycle
- the min-cuts in a graph $G \in \mathcal{M}$ consist of pairs of inter-bead edges in the same necklace
■ Dinits, Karzanov, and Lomonosov (1976) used a cactus to describe min-cuts in a graph

A Graph and its Min-cut Cactus

[^3]
A Graph and its Min-cut Cactus

Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

Constructing Graphs in \mathcal{M}

Proposition

Let $H \in \mathcal{M}$ with min-cut cactus $\mathcal{H}(H)$. Let u and v be vertices in distinct nodes of degree 2 of $\mathcal{H}(H)$ and let Q be a shortest path between them in $\mathcal{H}(H)$. Add a path of length at least 3 with endpoints u and v to obtain $G . G \in \mathcal{M}$ if and only if Q does not intersect any cycle of $\mathcal{H}(H)$ in exactly one or two edges.

Updating the Min-cut Cactus

Bounding the Number of Edges

Proposition

If $G \in \mathcal{M}$ has n vertices and m edges then

$$
m<\frac{6}{5} n .
$$

Outline

1 Introduction

2 Ear Decompositions

3 Necklaces

4 Min-cut Cactii

5 Summary

Summary

Summary

■ For every metric $c, 2 \mathrm{EC}(c)$ has an optimal solution in \mathcal{M}

Summary

■ For every metric $c, 2 \mathrm{EC}(c)$ has an optimal solution in \mathcal{M}
■ Graphs in \mathcal{M} can be constructed by adding ears

Summary

■ For every metric $c, 2 \mathrm{EC}(c)$ has an optimal solution in \mathcal{M}
■ Graphs in \mathcal{M} can be constructed by adding ears

- The min-cut cactus tells us whether or not adding a certain ear will give a graph in \mathcal{M}

[^4]
Summary

■ For every metric $c, 2 \mathrm{EC}(c)$ has an optimal solution in \mathcal{M}
■ Graphs in \mathcal{M} can be constructed by adding ears

- The min-cut cactus tells us whether or not adding a certain ear will give a graph in \mathcal{M}
- The min-cut cactus can be easily updated

Summary

■ For every metric $c, 2 \mathrm{EC}(c)$ has an optimal solution in \mathcal{M}
■ Graphs in \mathcal{M} can be constructed by adding ears

- The min-cut cactus tells us whether or not adding a certain ear will give a graph in \mathcal{M}
- The min-cut cactus can be easily updated

■ Thank you for attending my talk!

[^0]: Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

[^1]: Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

[^2]: Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

[^3]: Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

[^4]: Constructing Optimal Solutions to the Minimum Cost 2-edge-connected Spanning Subgraph Problem

