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Definition:

An m-cycle system of order n is a partition
of the edges of the complete graph K, into
cycles of length m.

Example: A cyclic 3-cycle decomposition of K7:

O



Theorem (Alspach & Gavlas (2001), Sajna (2002)):

An m-cycle system of order n exists if and
n(n—1)

only if n is odd, m divides , and either

n=1orn > m.

Cycle Length Admissible Orders
m =3 n =1 or 3 (mod 6)
m =4 n =1 (mod 8)
m=>5 n =1 or 5 (mod 10)




Definition:

A cycle system is k-colourable if its vertex
set can be partitioned into k sets (i.e. colour
classes) so that no cycle is monochromatic.

A cycle system is k-chromatic if it is
k-colourable but is not (k — 1)-colourable.
The system’s chromatic number is this k.

Example: A 3-colouring of a STS(7):




Lemma (Rosa (1970)):

Every 3-cycle system of order n > 7 has
chromatic number at least 3.

Theorem (Rosa (1970)):

For every admissible order n > 7, there exists
a 3-chromatic 3-cycle system of order n.

Theorem (Mathon, Phelps, & Rosa (1983)):

For every admissible order n, 7 < n < 15, all
3-cycle systems of order n are 3-chromatic.



Observation (Rosa (1970)):
For any positive integer k, there is a 3-cycle
system with chromatic number at least k.

Theorem (de Brandes, Phelps and Rodl (1982)):
For every integer £k > 3, there exists an
integer ng(k) such that for any admissible
order n > ng(k), there is a k-chromatic
3-cycle system of order n.




Theorem (Milici and Tuza (1999)):
For each integer m > 3, every m-cycle

system of order 2m + 1 is 2-colourable. For
each integer m > 10, every m-cycle system
of order 4m + 1 is 2-colourable.

Theorem (Milici and Tuza (1996)):
For every integer m > 3, there is an m-cycle

system which is not 2-colourable.




Theorem: (Burgess and Pike):
For any integer k > 2. there is an

integer wg such that for any admissible
order n > wyg, there is a k-chromatic
4-cycle system of order n.

Moreover, letting n4(k) be the smallest such
wy, which is an admissible order, ny(k) is
the smallest order for which there exists a
k-chromatic 4-cycle system.

Theorem (Burgess and Pike):
For any integers k > 3 and r > 3, there is a
k-chromatic (2r)-cycle system.



A 3-chromatic 6-cycle system:

CO00Q00000CO000

CO0COO0OO00000

For each ¢ € {1,...,t}, let

Si ={Z14, %24, ..., 12,4}
and let X; = {wl,ia . 3376,2'}-



A 6-cycle decomposition, Dy, of Kegp
(between X; and X;):

Z1,4 T Z3;4 T4 T5,i Zes

1 )

L1, ZL2,j Z3,j T4, Zs,j Z6,j

If X; and X; have D; between them, they
cannot both be coloured ccc***, and they
cannot both be coloured ***ccc.



The ten 6-cycle decompositions of K 6 used:
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For any pattern P € P, no two sets X;
and X ] with D, between them can both have
colouring matching P.

Any 2-colouring of X; matches a pattern in
one of the pattern sets Prqo, ¢ € {1,2},
a€{l,...,10}.



Constructing the system:
Take five sets S1, So, 53, S4, S5.

Xz' Sz — Xi

CHONONOGNONS)

COOOO0O

& S5 — X;

Resulting configuration: R;.

Take five copies of Ry.

ONONOGNORONS)

ONONONONONS

Resulting configuration: Ro



Take five copies of Ro.

O0000O0

ONCHONONONS

Resulting configuration: Rj

Take five copies of Ry.

O0O0O00O0

(ORONONONONG
X ;
J Sj — X;

Resulting configuration: Ryg



Can we 2-colour the system?

R1o contains five copies of Rg; any X; and X
in different copies have D1 between them. For
any P € Pj 10U Pa 10, at most one copy of Rg
has a set X; with colouring matching P.

So (at least) one copy of Rg has no set X;
coloured to match any pattern in P g,
c € {1,2}.

This copy of Rg contains five copies of Rg; any
X; and X in different copies have Dg between
them. For any P € Py g U Pag, at most copy
of Rg has a set X; with colouring matching P.

So (at least) one copy of Rg has no set X;
coloured to match any pattern in P g or P, 19,
c € {1,2}.

Continuing similarly, we get that there must
be a set X; whose colouring matches no pattern

in P o for any c € {1,2}, a € {1,...,10}.



A 3-colouring:
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