Colouring Even Cycle Systems

Andrea C. Burgess* and David A. Pike

Memorial University of Newfoundland St. John's, Newfoundland Canada

^{*} Current address: University of Ottawa

<u>Definition</u>:

An m-cycle system of order n is a partition of the edges of the complete graph K_n into cycles of length m.

Example: A cyclic 3-cycle decomposition of K_7 :



Theorem (Alspach & Gavlas (2001), Šajna (2002)):

An m-cycle system of order n exists if and only if n is odd, m divides $\frac{n(n-1)}{2}$, and either n = 1 or $n \ge m$.

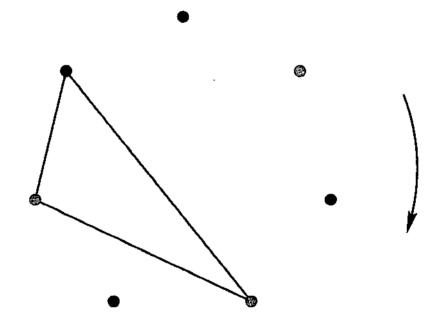
Cycle Length	<u>Admissible Orders</u>
m = 3	$n \equiv 1 \text{ or } 3 \pmod{6}$
m = 4	$n \equiv 1 \pmod{8}$
m = 5	$n \equiv 1 \text{ or } 5 \pmod{10}$

Definition:

A cycle system is k-colourable if its vertex set can be partitioned into k sets (i.e. colour classes) so that no cycle is monochromatic.

A cycle system is k-chromatic if it is k-colourable but is not (k-1)-colourable. The system's chromatic number is this k.

Example: A 3-colouring of a STS(7):



<u>Lemma</u> (Rosa (1970)):

Every 3-cycle system of order $n \geq 7$ has chromatic number at least 3.

Theorem (Rosa (1970)):

For every admissible order $n \geq 7$, there exists a 3-chromatic 3-cycle system of order n.

Theorem (Mathon, Phelps, & Rosa (1983)):

For every admissible order $n, 7 \le n \le 15$, all 3-cycle systems of order n are 3-chromatic.

Observation (Rosa (1970)):

For any positive integer k, there is a 3-cycle system with chromatic number at least k.

Theorem (de Brandes, Phelps and Rödl (1982)): For every integer $k \geq 3$, there exists an integer $n_3(k)$ such that for any admissible order $n \geq n_3(k)$, there is a k-chromatic 3-cycle system of order n.

Theorem (Milici and Tuza (1999)):

For each integer m > 3, every m-cycle system of order 2m + 1 is 2-colourable. For each integer $m \geq 10$, every m-cycle system of order 4m + 1 is 2-colourable.

Theorem (Milici and Tuza (1996)):

For every integer $m \geq 3$, there is an m-cycle system which is not 2-colourable.

Theorem: (Burgess and Pike):

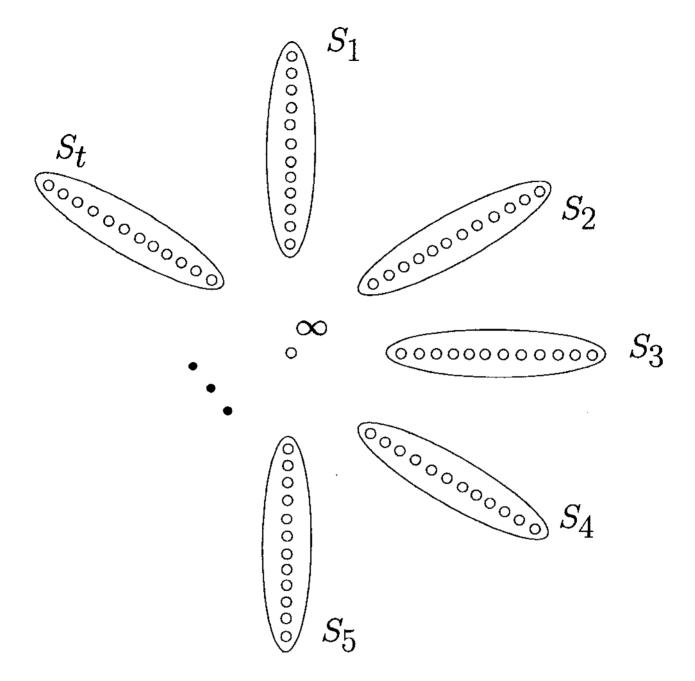
For any integer $k \geq 2$, there is an integer w_k such that for any admissible order $n \geq w_k$, there is a k-chromatic 4-cycle system of order n.

Moreover, letting $n_4(k)$ be the smallest such w_k which is an admissible order, $n_4(k)$ is the smallest order for which there exists a k-chromatic 4-cycle system.

Theorem (Burgess and Pike):

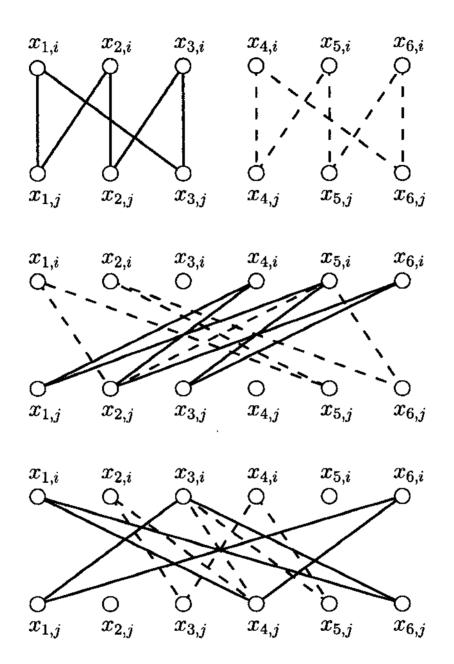
For any integers $k \geq 3$ and $r \geq 3$, there is a k-chromatic (2r)-cycle system.

A 3-chromatic 6-cycle system:



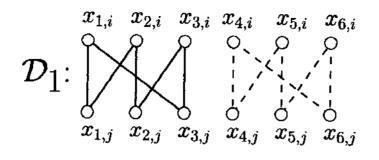
For each $i \in \{1, \ldots, t\}$, let $S_i = \{x_{1,i}, x_{2,i}, \ldots, x_{12,i}\}$ and let $X_i = \{x_{1,i}, \ldots, x_{6,i}\}$.

A 6-cycle decomposition, \mathcal{D}_1 , of $K_{6,6}$ (between X_i and X_j):

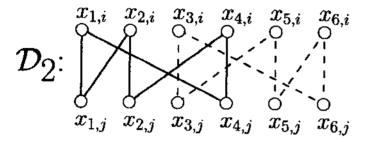


If X_i and X_j have \mathcal{D}_1 between them, they cannot both be coloured ccc***, and they cannot both be coloured ***ccc.

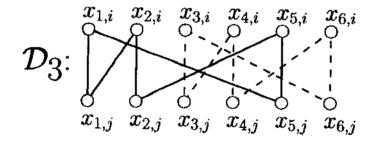
The ten 6-cycle decompositions of $K_{6,6}$ used:



$$\mathcal{P}_{c,1} = \{ccc ***, \\ ***ccc\}$$



$$\mathcal{P}_{c,2} = \{cc*c**, \\ **c*cc\}$$



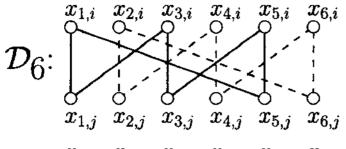
$$\mathcal{P}_{c,3} = \{cc **c*, \\ **cc*c\}$$

$$\mathcal{D}_4 : \bigvee_{x_{1,j}}^{x_{1,i}} \bigvee_{x_{2,j}}^{x_{2,i}} \bigvee_{x_{3,j}}^{x_{3,i}} \bigvee_{x_{4,j}}^{x_{4,i}} \bigvee_{x_{5,j}}^{x_{5,i}} \bigvee_{x_{6,j}}^{x_{6,i}}$$

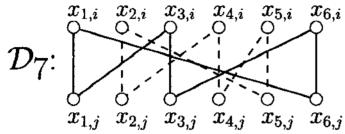
$$\mathcal{P}_{c,4} = \{cc***c, \\ **ccc*\}$$

$$\mathcal{D}_{5}: \bigcup_{x_{1,j}}^{x_{1,i}} \bigcup_{x_{2,j}}^{x_{2,i}} \bigcup_{x_{3,j}}^{x_{3,i}} \bigcup_{x_{4,j}}^{x_{4,i}} \bigcup_{x_{5,j}}^{x_{5,i}} \bigcup_{x_{6,j}}^{x_{6,i}}$$

$$\mathcal{P}_{c,5} = \{c*cc**, \\ *c**cc\}$$



$$\mathcal{P}_{c,6} = \{c*c*c*, \\ *c*c*c\}$$



$$\mathcal{P}_{c,7} = \{c*c**c, \\ *c*cc*\}$$

$$\mathcal{D}_8$$
: $x_{1,i}$ $x_{2,i}$ $x_{3,i}$ $x_{4,i}$ $x_{5,i}$ $x_{6,i}$ $x_{6,i}$ $x_{1,j}$ $x_{2,j}$ $x_{3,j}$ $x_{4,j}$ $x_{5,j}$ $x_{6,j}$

$$\mathcal{P}_{c,8} = \{c**cc*, \\ *cc**c\}$$

$$\mathcal{D}_9$$
: $x_{1,i}$ $x_{2,i}$ $x_{3,i}$ $x_{4,i}$ $x_{5,i}$ $x_{6,i}$ $x_{6,i}$ $x_{1,j}$ $x_{2,j}$ $x_{3,j}$ $x_{4,j}$ $x_{5,j}$ $x_{6,j}$

$$\mathcal{P}_{c,9} = \{c**c*c, \\ *cc*c*\}$$

$$\mathcal{D}_{10} : \underbrace{ \begin{bmatrix} x_{1,i} & x_{2,i} & x_{3,i} & x_{4,i} & x_{5,i} & x_{6,i} \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ x_{1,j} & x_{2,j} & x_{3,j} & x_{4,j} & x_{5,j} & x_{6,j} \end{bmatrix}}_{x_{4,j}}$$

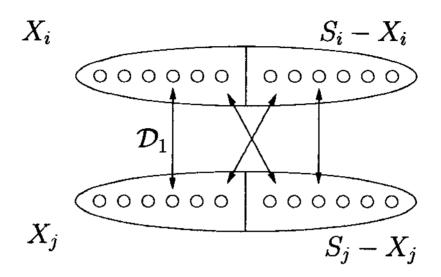
$$\mathcal{P}_{c,10} = \{c ***cc, \\ *ccc **\}$$

For any pattern $P \in \mathcal{P}_{c,\alpha}$, no two sets X_i and X_j with \mathcal{D}_{α} between them can both have colouring matching P.

Any 2-colouring of X_i matches a pattern in one of the pattern sets $\mathcal{P}_{c,\alpha}$, $c \in \{1,2\}$, $\alpha \in \{1,\ldots,10\}$.

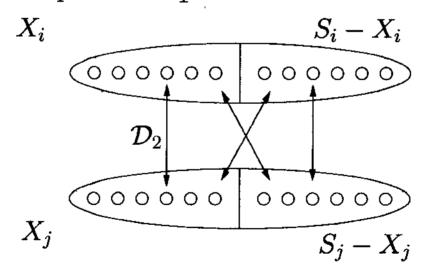
Constructing the system:

Take five sets S_1 , S_2 , S_3 , S_4 , S_5 .



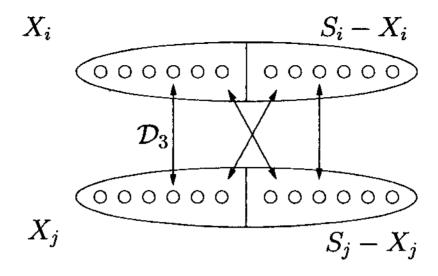
Resulting configuration: R_1 .

Take five copies of R_1 .



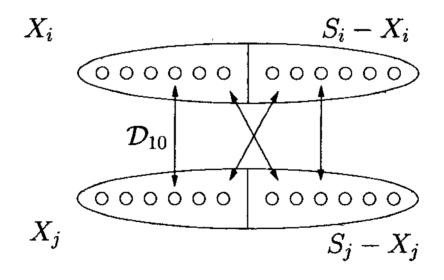
Resulting configuration: R_2

Take five copies of R_2 .



Resulting configuration: R_3

Take five copies of R_9 .



Resulting configuration: R_{10}

Can we 2-colour the system?

 R_{10} contains five copies of R_9 ; any X_i and X_j in different copies have \mathcal{D}_{10} between them. For any $P \in \mathcal{P}_{1,10} \cup \mathcal{P}_{2,10}$, at most one copy of R_9 has a set X_i with colouring matching P.

So (at least) one copy of R_9 has no set X_i coloured to match any pattern in $\mathcal{P}_{c,10}$, $c \in \{1,2\}$.

This copy of R_9 contains five copies of R_8 ; any X_i and X_j in different copies have \mathcal{D}_9 between them. For any $P \in \mathcal{P}_{1,9} \cup \mathcal{P}_{2,9}$, at most copy of R_8 has a set X_i with colouring matching P.

So (at least) one copy of R_8 has no set X_i coloured to match any pattern in $\mathcal{P}_{c,9}$ or $\mathcal{P}_{c,10}$, $c \in \{1,2\}$.

Continuing similarly, we get that there must be a set X_i whose colouring matches no pattern in $\mathcal{P}_{c,\alpha}$ for any $c \in \{1, 2\}, \alpha \in \{1, \dots, 10\}$.

A 3-colouring:

