Graph Isomorphism Completeness for Subclasses of Perfect Graphs

Christina Boucher¹

¹School of Computer Science University of Waterloo

Ontario Combinatorics Workshop, 2006 (joint work with D. Loker)

Table of Contents

- Preliminaries
- Result for Perfect Graphs
- Result for Subclasses of Perfect Graphs
- Conclusions and Future Work

- Preliminaries
 - Graph Isomorphism
 - Perfect Graphs
 - Berge Graphs
 - The Strong Perfect Graph Theorem
- Result for Perfect Graphs
- Result for Subclasses of Perfect Graphs
 - Five Basic Graph Classes
 - Graph Classes Defined by Graph Decompositions
- Conclusions and Future Work

Graph Isomorphism

Definition

We define two graphs G_1 and G_2 to be **isomorphic** if there is a bijection $\varphi: V_1 \to V_2$ such that $(u, v) \in E_1$ if and only if $(\varphi(u), \varphi(v)) \in E_2$.

Graph Isomorphism Perfect Graphs Berge Graphs The Strong Perfect Graph Theorem

Graph Isomorphism

Definition

The **Graph Isomorphism problem (GI)** consists of deciding whether two given graphs are isomorphic.

Graph Isomorphism

Definition

The **Graph Isomorphism problem (GI)** consists of deciding whether two given graphs are isomorphic.

Some Basic Facts:

- Gl is in the class NP
- No known polynomial time algorithm for Gl
- Strong evidence that the problem is not NP-complete

Graph Isomorphism
Perfect Graphs
Berge Graphs
The Strong Perfect Graph Theorem

The Computational Complexity Class GI

Definition

A problem is said to be *GI*-complete if it is provably as hard as GI.

The Computational Complexity Class GI

Definition

A problem is said to be *GI*-complete if it is provably as hard as GI.

GI-Complete bipartite graphs split graphs

split graphs chordal graphs

The Computational Complexity Class GI

Definition

A problem is said to be *GI*-complete if it is provably as hard as GI.

GI-Complete

Polynomial Time Solvable

bipartite graphs split graphs chordal graphs

planar graphs interval graphs convex graphs

Definition

Definition

$$\chi(G)=3$$

$$\omega(G)=3$$

$$\chi(G)=3$$

$$\omega(G) = 2$$

$$\chi(G)=3$$

$$\omega(G)=3$$

Definition

$$\chi(G)=3$$

$$\omega(G)=3$$

$$\chi(G)=3$$

$$\omega(G) = 2$$

$$\chi(G)=3$$

$$\omega(G)=2$$

Definition

Preliminaries

A **chord** is an edge which joins two vertices of a path or cycle but is not itself not in the path or cycle.

Preliminaries

A **chord** is an edge which joins two vertices of a path or cycle but is not itself not in the path or cycle.

A **hole** is a chordless cycle of length greater than or equal to 4. An **antihole** is a hole in the complement graph.

Berge Graphs

Berge Graphs are graphs that contain no odd hole and no odd antihole.

Berge Graphs

Berge Graphs are graphs that contain no odd hole and no odd antihole.

In 1961, Claude Berge made two Conjectures:

Weak Perfect Graph Conjecture

The complement of every perfect graph is perfect.

The Strong Perfect Graph Conjecture (SPGC)

A graph is perfect if and only if it is Berge.

Berge and Perfect Graphs

Berge Graphs are graphs that contain no odd hole and no odd antihole.

In 1961, Claude Berge made two Conjectures:

Lovász's Theorem (1972)

The complement of every perfect graph is perfect.

The Strong Perfect Graph Theorem (2002 to 2005)

A graph is perfect if and only if it is Berge.

Classes of Perfect Graphs

The SPGC was first verified for several graph classes, including:

- claw-free graphs (Parthasarathy and Ravindra, 1976)
- K₄-free graphs (Tucker, 1977)
- bull-free graphs (Chvátal and Sbihi, 1987)
- chair-free graphs (Sassano, 1997)

How the Strong Perfect Graph Theorem was Proved

Theorem (Chudnovsky, Robertson, Seymour and Thomas [C+06])

Every Berge graph G satisfies one of the following:

- G or \overline{G} is bipartite,
- G or \overline{G} is the line graph of a bipartite graph,
- G is a double split graph

or

- G or \overline{G} admits a 2-join,
- G or \overline{G} admits a homogeneous pair,
- G admits a balanced skew partition.

How the Strong Perfect Graph Theorem was Proved

Theorem (Chudnovsky [Chu03])

Every Berge graph G satisfies one of the following:

- G or \overline{G} is bipartite,
- G or \overline{G} is the line graph of a bipartite graph,
- G is a double split graph

or

- G or \overline{G} admits a 2-join,
- G or G admits a homogeneous pair,
- G admits a balanced skew partition.

- Preliminaries
 - Graph Isomorphism
 - Perfect Graphs
 - Berge Graphs
 - The Strong Perfect Graph Theorem
- Result for Perfect Graphs
- Result for Subclasses of Perfect Graphs
 - Five Basic Graph Classes
 - Graph Classes Defined by Graph Decompositions
- Conclusions and Future Work

GI-Completeness for Perfect Graphs

Lemma 1

Given the graph classes α and β such that $\beta \subseteq \alpha$, if GI for β is GI-complete then GI for α is GI-complete.

GI-Completeness for Perfect Graphs

Lemma 1

Given the graph classes α and β such that $\beta \subseteq \alpha$, if GI for β is GI-complete then GI for α is GI-complete.

Corollary 1

GI for the class of perfect graphs is GI-complete.

Proof:

- GI for chordal graphs has been shown to be GI-complete [BL79]
- Chordal graphs is a subclass of perfect graphs

- Preliminaries
 - Graph Isomorphism
 - Perfect Graphs
 - Berge Graphs
 - The Strong Perfect Graph Theorem
- Result for Perfect Graphs
- 3 Result for Subclasses of Perfect Graphs
 - Five Basic Graph Classes
 - Graph Classes Defined by Graph Decompositions
- Conclusions and Future Work

Two General Results

Lemma 2

The GI problem for any restricted proper graph class is in GI.

Lemma 3

Given two graphs G_1 and G_2 and their respective complements \bar{G}_1 and \bar{G}_2 , $G_1 \sim G_2$ if and only if $\bar{G}_1 \sim \bar{G}_2$.

Five Basic Graph Classes

We show the GI-completeness for the first five basic graph classes:

- Bipartite graphs and their complements
- Line graphs of bipartite graphs and their complements
- Double Split Graphs

These results are trivial from the result that bipartite graphs are *Gl*-complete.

We consider an reduction from **split graphs** to double split graphs to show the *Gl*-hardness.

Five Basic Graph Classes

We show the *GI*-completeness for the first five basic graph classes:

- Bipartite graphs and their complements
- Line graphs of bipartite graphs and their complements
- Double Split Graphs

These results are trivial from the result that bipartite graphs are GI-complete.

We consider an reduction from **split graphs** to double split graphs to show the *GI*-hardness.

Definition

A graph is a **double split graph** if V can be partitioned into four sets A, B, C, D as follows:

• a_i is adjacent to b_i for $1 \le i \le m$

• c_j is nonadjacent to d_j for $1 \le j \le n$

• There exists a P_4 joining the pairs $\{a_i, b_i\}$ and $\{c_j, d_j\}$ (and the edges of the P_4 have no common end).

• There exists a P_4 joining the pairs $\{a_i, b_i\}$ and $\{c_j, d_j\}$ (and the edges of the P_4 have no common end).

• There exists a P_4 joining the pairs $\{a_i, b_i\}$ and $\{c_j, d_j\}$ (and the edges of the P_4 have no common end).

Definition of a Split Graph

Definition

A **split graph** is a graph whose vertex set can be partitioned into a clique and stable set.

Reduction: Split Graphs → Double Split Graphs

We let $G = (Q \cup S, E)$ be our split graph.

• Replace every $q_i \in Q$ by two non-adjacent vertices c_i, d_i .

• Replace every $s_i \in S$ by two adjacent vertices a_i, b_i .

• For every edge $\{q_i,s_j\}\in \mathcal{E}$ we have $\{d_i,b_j\}\in \mathcal{E}$, $\{a_i,c_j\}\in \mathcal{E}$.

• For every edge $\{q_i, s_j\} \not\in E$ we have $\{d_i, a_j\} \in \mathcal{E}$, $\{c_i, b_j\} \in \mathcal{E}$.

GI-Completeness for Double Split Graphs

Theorem

GI for double split graphs is GI-complete.

Proof:

- GI for double split graphs is in GI (lemma 2).
- GI for split graphs is GI-complete.
- From our reduction it follows that GI for double split graphs is GI-hard.

Graph Classes Defined by Graph Decompositions

We show GI for the following graph classes is GI-complete:

- Graphs admitting a balanced skew partition
- Graphs admitting a 2-join
- Graphs whose complement admits a 2-join

The result follows from a reduction from split graphs.

We consider an reduction from bipartite graphs to graphs admitting a 2-join to show the *GI*-hardness.

Graph Classes Defined by Graph Decompositions

We show GI for the following graph classes is GI-complete:

- Graphs admitting a balanced skew partition
- Graphs admitting a 2-join
- Graphs whose complement admits a 2-join

The result follows from a reduction from split graphs.

We consider an reduction from bipartite graphs to graphs admitting a 2-join to show the *GI*-hardness.

Follows from the previous result and lemma 3.

Graph Classes Defined by Graph Decompositions

We show GI for the following graph classes is GI-complete:

- Graphs admitting a balanced skew partition
- Graphs admitting a 2-join
- Graphs whose complement admits a 2-join

The result follows from a reduction from split graphs. We consider an reduction from bipartite graphs to graphs admitting a 2-join to show the *Gl*-hardness.

Follows from the previous result and lemma 3.

Definition of a 2-join Graph

Definition

G admits a **2-join** if V(G) can be partitioned A and B, where A_1 , A_2 are disjoint subsets of A and B_1 , B_2 are disjoint subsets of B, such that:

Reduction: Bipartite Graphs → Graphs Admitting a 2-join

We let $G = (A \cup B, E)$ be our bipartite graph.

Reduction: Bipartite Graphs → Graphs Admitting a 2-join

• The vertex set \mathcal{V} of the reduced graph $\mathcal{G} = (\mathcal{V} = A \cup A' \cup B \cup B', \mathcal{E}).$

Reduction: Bipartite Graphs → Graphs Admitting a 2-join

• The vertex set \mathcal{V} of the reduced graph $\mathcal{G} = (\mathcal{V} = A \cup A' \cup B \cup B', \mathcal{E}).$

GI-Completeness for Graphs Admitting a 2-join

Theorem

Gl for graphs admitting a 2-join is *Gl*-complete.

Proof:

- GI for the class of graphs admitting a 2-join is in GI (lemma 2).
- GI for bipartite graphs is GI-complete
- From our reduction it follows that GI for graphs admitting a 2-join is GI-hard.

- Preliminaries
 - Graph Isomorphism
 - Perfect Graphs
 - Berge Graphs
 - The Strong Perfect Graph Theorem
- Result for Perfect Graphs
- 3 Result for Subclasses of Perfect Graphs
 - Five Basic Graph Classes
 - Graph Classes Defined by Graph Decompositions
- Conclusions and Future Work

Extensions to Other Graph Classes

GI for chordal bipartite graphs and strongly chordal graphs is *GI*-complete [UTN05].

chordal bipartite \subseteq strongly chordal \subseteq SQP \subseteq QP.

 GI for strict quasi-parity (SQP) and quasi-parity (QP) is GI-complete.

Extensions to Other Graph Classes

GI for chordal bipartite graphs and strongly chordal graphs is *GI*-complete [UTN05].

chordal bipartite \subseteq strongly chordal \subseteq SQP \subseteq QP.

 GI for strict quasi-parity (SQP) and quasi-parity (QP) is GI-complete.

Extensions to Other Graph Classes

GI for chordal bipartite graphs and strongly chordal graphs is *GI*-complete [UTN05].

chordal bipartite \subseteq strongly chordal \subseteq SQP \subseteq QP.

- GI for strict quasi-parity (SQP) and quasi-parity (QP) is GI-complete.
- perfectly contractile graphs is a GI-complete graph class since strongly chordal graphs is a subclass of perfectly contractile graphs.

Future Work

GI-completeness for the following two classes is open:

- clique separable
- trapezoid graphs

Future Work

clique separable

clique separable \subseteq perfectly contractile \subseteq SQP

Future Work

trapezoid graphs

Conjecture

There exists a polynomial-time GI algorithm for trapezoid graphs.

Final Notes

• All graph classes that have shown to be *GI*-complete are subclasses of perfect graphs.

Final Notes

- All graph classes that have shown to be GI-complete are subclasses of perfect graphs.
- Are there other complexity problems that could be formulated into a GI problem and shown to be GI-complete?

References

[BL79] K.S. Booth and G.S. Leuker, "A linear time algorithm for deciding interval graph isomorphism", *Journal of the ACM*, 26(2): 183-195, 1979.

[Chu03] M. Chudnovsky, "Berge trigraphs and their applications", PhD thesis, Princeton University, Princeton NJ, 2003.

[C+06] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, "The Strong Perfect Graph Theorem", *Annals of Mathematics*, to appear.

[UTN05] R. Uehara, S. Toda and T. Nagoya, "Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs", *Discrete Applied Mathematics*, 145(3): pp 479-482, 2005.