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Preliminaries

Graph Isomorphism

Definition

We define two graphs G; and Gy to be isomorphic if there is a
bijection ¢ : Vi — V5, such that (u, v) € E; if and only if
(p(u), p(v)) € E.
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The Graph Isomorphism problem (Gl) consists of deciding
whether two given graphs are isomorphic.
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Graph Isomorphism

Definition
The Graph Isomorphism problem (Gl) consists of deciding
whether two given graphs are isomorphic.

Some Basic Facts:

@ Gl is in the class NP
@ No known polynomial time algorithm for Gl
@ Strong evidence that the problem is not NP-complete
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The Computational Complexity Class G/

Definition

A problem is said to be GI-complete if it is provably as hard as Gl.
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Preliminaries

The Computational Complexity Class G/

Definition
A problem is said to be GI-complete if it is provably as hard as Gl.

GI-Complete  Polynomial Time Solvable
bipartite graphs planar graphs

split graphs interval graphs

chordal graphs  convex graphs
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Perfect Graphs

Definition
A graph G is defined to be perfect if for every induced subgraph of
G, the size of the largest clique equals the chromatic number.
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Perfect Graphs

Definition
A graph G is defined to be perfect if for every induced subgraph of
G, the size of the largest clique equals the chromatic number.

A

perfect imperfect imperfect
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Preliminaries

A chord is an edge which joins two vertices of a path or cycle but
is not itself not in the path or cycle.
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Preliminaries

A chord is an edge which joins two vertices of a path or cycle but
is not itself not in the path or cycle. ’

A hole is a chordless cycle of length greater than or equal to 4. An
antihole is a hole in the complement graph. J

YA
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Berge Graphs

Berge Graphs are graphs that contain no odd hole and no odd
antihole.
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Berge Graphs

Berge Graphs are graphs that contain no odd hole and no odd
antihole. J

In 1961, Claude Berge made two Conjectures:

Weak Perfect Graph Conjecture
The complement of every perfect graph is perfect.

The Strong Perfect Graph Conjecture (SPGC)

A graph is perfect if and only if it is Berge.
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Berge and Perfect Graphs

Berge Graphs are graphs that contain no odd hole and no odd
antihole. J

In 1961, Claude Berge made two Conjectures:

Lovasz's Theorem (1972)
The complement of every perfect graph is perfect.

The Strong Perfect Graph Theorem (2002 to 2005)

A graph is perfect if and only if it is Berge.

Boucher, Christina Gl-Completeness for Perfect Graphs 10/30



Graph Isomorphism

Perfect Graphs

Berge Graphs

The Strong Perfect Graph Theorem

Preliminaries

Classes of Perfect Graphs

The SPGC was first verified for several graph classes, including:

o claw-free graphs (Parthasarathy and Ravindra, 1976)
o Ki-free graphs (Tucker, 1977)

@ bull-free graphs (Chvétal and Sbihi, 1987)

@ chair-free graphs (Sassano, 1997)

Y Ui

claw diamond bull chair
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How the Strong Perfect Graph Theorem was Proved

Theorem (Chudnovsky, Robertson, Seymour and Thomas [C+06])
Every Berge graph G satisfies one of the following:

@ G or G is bipartite,

@ G or G is the line graph of a bipartite graph,

@ G is a double split graph
or

@ G or G admits a 2-join,

@ G or G admits a homogeneous pair,

@ G admits a balanced skew partition.
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Preliminaries

How the Strong Perfect Graph Theorem was Proved

Theorem (Chudnovsky [Chu03])

Every Berge graph G satisfies one of the following:
@ G or G is bipartite,
@ G or G is the line graph of a bipartite graph,
@ G is a double split graph

or

@ G or G admits a 2-join,

o Gor-Gadmits—a-homogeneous—pair;

@ G admits a balanced skew partition.
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GFCompleteness for Perfect Graphs

Given the graph classes a and 8 such that 5 C o, if Gl for 8 is
Gl-complete then Gl for « is GFcomplete.
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Result for Perfect Graphs

GFCompleteness for Perfect Graphs

Given the graph classes a and 8 such that 5 C o, if Gl for 8 is
Gl-complete then Gl for « is GFcomplete.

Gl for the class of perfect graphs is Glcomplete.

Proof:

@ Gl for chordal graphs has been shown to be Gl-complete
[BL79]

@ Chordal graphs is a subclass of perfect graphs
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© Result for Subclasses of Perfect Graphs
@ Five Basic Graph Classes
@ Graph Classes Defined by Graph Decompositions
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Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Two General Results

The Gl problem for any restricted proper graph class is in Gl.

Given two graphs G; and G, and their respective complements el
and G2, G1 ~ G2 if and onIy if G1 ~ G2.
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Five Basic Graph Classes

We show the Gl-completeness for the first five basic graph classes:
@ Bipartite graphs and their complements

@ Line graphs of bipartite graphs and their complements

These results are trivial from the result that bipartite graphs are
Gl-complete.
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Five Basic Graph Classes

We show the Gl-completeness for the first five basic graph classes:
@ Bipartite graphs and their complements
@ Line graphs of bipartite graphs and their complements
@ Double Split Graphs

We consider an reduction from split graphs to double split graphs
to show the Gl-hardness.
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Result for Subclasses of Perfect Graphs

Definition of a Double Split Graph

Definition
A graph is a double split graph if V can be partitioned into four
sets A, B, C, D as follows:
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Result for Subclasses of Perfect Graphs

Definition of a Double Split Graph

@ a;is adjacent to b for 1 < i< m J
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Five Basic Graph Classes
Graph Classes Defined by Graph Decompositions

Result for Subclasses of Perfect Graphs

Definition of a Double Split Graph

@ ¢j is nonadjacent to dj for 1 < j < n J
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Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Definition of a Double Split Graph

@ There exists a Py joining the pairs {a;, bj} and {¢;, d;} (and
the edges of the P, have no common end).

C D A B
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Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Definition of a Split Graph

Definition

A split graph is a graph whose vertex set can be partitioned into a
clique and stable set.
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Reduction: Split Graphs — Double Split Graphs

We let G = (Q U S, E) be our split graph. ]

O
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Five Basic Graph Classes

Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Reduction: Split Graphs — Double Split Graphs

@ Replace every gi € Q by two non-adjacent vertices c¢;, d;. )

O OO0
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Five Basic Graph Classes

Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Reduction: Split Graphs — Double Split Graphs

@ Replace every s; € S by two adjacent vertices a;, b;. J

o0
o0
00
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Graph Classes Defined by Graph Decompositions

Result for Subclasses of Perfect Graphs

Reduction: Split Graphs — Double Split Graphs

@ For every edge {q;,s;} € E we have {d;, b;} € &, {aj,¢j} € E.J
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Graph Classes Defined by Graph Decompositions

Result for Subclasses of Perfect Graphs

Reduction: Split Graphs — Double Split Graphs

@ For every edge {q;,s;} & E we have {d;,a;} € £, {ci, bj} € E.J
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Graph Classes Defined by Graph Decompositions

Result for Subclasses of Perfect Graphs

GlCompleteness for Double Split Graphs

Gl for double split graphs is Gl-complete.

@ Gl for double split graphs is in G/ (lemma 2).

@ Gl for split graphs is GI-complete.

@ From our reduction it follows that Gl for double split graphs is
Gl-hard.
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Graph Classes Defined by Graph Decompositions

We show Gl for the following graph classes is Gl-complete:

@ Graphs admitting a balanced skew partition

The result follows from a reduction from split graphs.
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Graph Classes Defined by Graph Decompositions

We show Gl for the following graph classes is Gl-complete:
@ Graphs admitting a balanced skew partition

@ Graphs admitting a 2-join

We consider an reduction from bipartite graphs to graphs
admitting a 2-join to show the GFhardness.
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Graph Classes Defined by Graph Decompositions

We show Gl for the following graph classes is Gl-complete:
@ Graphs admitting a balanced skew partition
@ Graphs admitting a 2-join

@ Graphs whose complement admits a 2-join

Follows from the previous result and lemma 3.
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Definition of a 2-join Graph

Definition

G admits a 2-join if V(G) can be partitioned A and B, where Ay,
A are disjoint subsets of A and B;, B are disjoint subsets of B,
such that:

IO
(=)
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Result for Subclasses of Perfect Graphs

Reduction: Bipartite Graphs — Graphs Admitting a 2-join

We let G = (AU B, E) be our bipartite graph. )
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Result for Subclasses of Perfect Graphs Graph Classes Defined by Graph Decompositions

Reduction: Bipartite Graphs — Graphs Admitting a 2-join

@ The vertex set V of the reduced graph
G=(V=AUAUBUB,E).
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Result for Subclasses of Perfect Graphs

GFCompleteness for Graphs Admitting a 2-join

Gl for graphs admitting a 2-join is Glcomplete.

@ Gl for the class of graphs admitting a 2-join is in G/ (lemma
2).
@ Gl for bipartite graphs is Gl-complete

@ From our reduction it follows that Gl for graphs admitting a
2-join is Gl-hard.
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Conclusions and Future Work

Extensions to Other Graph Classes

Gl for chordal bipartite graphs and strongly chordal graphs is
Gl-complete [UTNO05].

chordal bipartite C strongly chordal C SQP C QP. J

o Gl for strict quasi-parity (SQP) and quasi-parity (QP) is
Gl-complete.

Boucher, Christina Gl-Completeness for Perfect Graphs 27/30



Conclusions and Future Work

Extensions to Other Graph Classes

Gl for chordal bipartite graphs and strongly chordal graphs is
Gl-complete [UTNO05].

chordal bipartite C strongly chordal C SQP C QP. J

o Gl for strict quasi-parity (SQP) and quasi-parity (QP) is
Gl-complete.

Boucher, Christina Gl-Completeness for Perfect Graphs 27/30



Conclusions and Future Work

Extensions to Other Graph Classes

Gl for chordal bipartite graphs and strongly chordal graphs is
Gl-complete [UTNO05].

chordal bipartite C strongly chordal C SQP C QP. J

o Gl for strict quasi-parity (SQP) and quasi-parity (QP) is
Gl-complete.

o perfectly contractile graphs is a Gl-complete graph class
since strongly chordal graphs is a subclass of perfectly
contractile graphs.
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Future Work

Gl-completeness for the following two classes is open:

o clique separable
o trapezoid graphs
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Future Work

@ clique separable

clique separable C perfectly contractile € SQP J
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Future Work

o trapezoid graphs

There exists a polynomial-time Gl algorithm for trapezoid graphs.
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Final Notes

@ All graph classes that have shown to be Gl-complete are
subclasses of perfect graphs.
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Conclusions and Future Work

Final Notes

@ All graph classes that have shown to be Gl-complete are
subclasses of perfect graphs.

@ Are there other complexity problems that could be formulated
into a Gl problem and shown to be Gl-complete?
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