Approximating the Power Dominating Set problem

Ashkan Aazami

University of Waterloo aaazami@math.uwaterloo.ca (joint work with Michael Stilp)

April 22, 2006

Dominating Set problem

Definition (DOMINATING RULES)

Given a graph G = (V, E) and a subset $S \subseteq V$, the set of dominated nodes, \mathcal{D}_S , is defined by:

- $v \in V$ is dominated if $v \in S$.
- $v \in V$ is dominated if v is an neighbor of a node $u \in S$.

Problem (DOMSET)

Given a graph G find a min. size dominating set, i.e. min. size subset $S \subseteq V$ such that $\mathcal{D}_S = V(G)$.

Examples

Examples

Examples

$$S = \{2,5\}$$
 $\mathcal{D}_S = V(G)$.

Second Example - 5×5 grid

Second Example - 5×5 grid

Second Example - 5×5 grid

Approximating Set Cover

Problem (SETCOVER)

Given a universe U of n elements, a collection of subsets of U, $S = \{S_1, \dots, S_k\}$, find minimum number of sets from S that covers all elements of U.

$\mathsf{Theorem} \ (\ (\mathsf{Johnson}), \ (\mathsf{Lovasz}) \ \mathsf{and} \ (\mathsf{Chvatal}))$

SETCOVER can be approximated within $ln\ n$ by a simple greedy algorithm.

Theorem ((Lund, Yannakakis) and (Feige))

SETCOVER cannot be approximated better than $O(\log n)$ unless P = NP.

Approximating Dominating Set

- DomSet is a special case of the SetCover problem.
- Define $\mathcal{I}(G) = (S, V)$: $S = \{S_v = N_G(v) \cup \{v\} | \forall v \in V\}$, where $N_G(v)$ is the set of neighbors of v in G.
- DOMSET can be approximated within O(log n) by the following greedy algorithm:
 - 1: *S* ← ∅
 - 2: while $\mathcal{D}_S \neq V(G)$ do
 - 3: Pick v which maximize $|\mathcal{D}_{S \cup \{v\}} \setminus \mathcal{D}_S|$.
 - 4: $S \leftarrow S \cup \{v\}$.
 - 5: end while
 - 6: Output S.
- DomSet can not be approximated better than $O(\log n)$

Power Dominating Set problem

Definition (Power Dominating Rules)

Given a graph G = (V, E) and a subset $S \subseteq V$, the set of power dominated nodes, \mathcal{P}_S , is defined by:

- $v \in V$ is power dominated if $v \in S$.
- ② $v \in V$ is power dominated if v is an neighbor of a node $u \in S$.
- $v \in V$ is power dominated if v has a neighbor u such that u and all of its neighbors except v are power dominated.

Problem (PDS)

Given a graph G find a min. size power dominating set, i.e. min. size subset $S \subseteq V$ such that $\mathcal{P}_S = V(G)$.

Generally

 $\ell \times k$ grid:

Opt $\leq \frac{1}{2} \min(\ell, k)$.

• PDS is a generalization to DomSet.

Reduction:

• PDS is a generalization to DomSet.

Reduction:

• PDS is a generalization to DomSet.

Reduction:

$\mathsf{Theorem}$

Given graph G. Let G' be the graph constructed as above: S is a dominating set in G iff S is a power dominating set in G'.

• PDS is a generalization to DomSet.

Reduction:

Theorem

Given graph G. Let G' be the graph constructed as above: S is a dominating set in G iff S is a power dominating set in G'.

Theorem ((Guo et al.), (Kneis et al.))

PDS cannot be approximated better than $O(\log(n))$ unless P = NP.

The Greedy Algorithm works poorly on PDS

Greedy Algorithm

- 1: *S* ← ∅
- 2: while $\mathcal{P}_S \neq V(G)$ do
- 3: Pick v which maximize $|\mathcal{P}_{S \cup \{v\}} \setminus \mathcal{P}_{S}|$.
- 4: $S \leftarrow S \cup \{v\}$.
- 5: end while
- 6: Output *S*.

Theorem

Given graph G = (V, E) with n nodes, the above greedy algorithm may find a solution S such that $|S| \ge \Omega(n) \times Opt(G)$.

Greedy Algorithm

Proof of the theorem- $5 \times 5n$ subdivided grid

Proof of the theorem- $5 \times 5n$ subdivided grid

• Opt = 2

Proof of the theorem- $5 \times 5n$ subdivided grid

• Opt = 2

Proof of the theorem- $5 \times 5n$ subdivided grid

- Opt = 2
- Greedy Algorithm may take all of the middle nodes in the 5×5 subgrids.

Proof of the theorem- $\overline{5 \times 5n}$ subdivided grid

- Opt = 2
- Greedy Algorithm may take all of the middle nodes in the 5×5 subgrids.
- $|S| \geq n = \Omega(|V|).Opt$

- Haynes et al. presented a linear-time algorithm to solve PDS optimally on trees.
- Guo et al. developed a poly-time dynamic programming to solve PDS optimally on graphs of bounded tree-width.
- PDS remains NP-hard even on planar graphs.
- We have a \sqrt{n} -approximation algorithm for planar graphs.
- We also show that there is no poly-log approximation for PDS by a reduction from MINREP problem.
- We also study the PDS problem in directed graphs and extend the result of Guo et al. to directed graphs where their underlying undirected graphs are bounded tree-width.

References

- HHHH02 T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, Domination in graphs applied to electric power networks, *SIAM J. of Discrete Mathematics*, 15(4):519–529, 2002.
 - GNR05 J. Guo, R. Niedermeier, and D. Raible, Improved algorithms and complexity results for power domination in graphs, *International Symposium on Fundamentals of Computation Theory*, 3623:172–184, 2005.
- KMRR04 J. Kneis, D. Molle, S. Richter, and P. Rossmanith, Parameterized power domination complexity, *RWTH Aachen Department of Computer Science Technical Report*, 2004.
 - AS06 A. Aazami, M. Stilp, Approximation algorithms and hardness for domination with propagation, *manuscript*