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Overview of Presentation

• Modelling problem 1: Mobility of nuclear proteins

• Modelling problem 2: Spatial organization of nuclear proteins
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FRAP:
Fluorescence Recovery After Photobleaching

Proteins of interest are tagged with Green

Fluorescence Protein (GFP).

The fluorescent proteins are photobleached

within a small region of the nucleus.

Due to diffusional exchange between

bleached and unbleached proteins, fluores-

cence in the targeted area recovers.
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Fluorescence Recovery Data
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Modelling Problem 1 (Mobility)

From the fluorescence recovery data, how does one deduce in-

formation about the mobility of the proteins being studied?

Outline

• Historical approach

• New models and analysis

• Concluding remarks for the mobility problem
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Historical Approach:
Determining an Effective Diffusion Coefficient
(D. Axelrod et al., 1976)

• Solve the diffusion equation:

∂

∂t
u(x, t) = Deff

∂2u(x, t)

∂x2
.

• Obtain the theoretical fluorescence recovery curve:

R(t) =

∫

Λ
u(x, t)dx.

• Fit the theoretical fluorescence recovery curve to the exper-

imental data to find Deff .
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Fitting the Diffusion model to Experimental Data
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The diffusion model does not provide satisfactory fits because

the mobility of nuclear proteins is governed not only by diffusion,

but also by interactions with other structures in the nucleus.

8



Assumptions for New Models

• Proteins undergo a reversible binding process with a structure

that is assumed to be immobile on the time scale of the

experiment.

• The structure is assumed to be spatially homogeneously dis-

tributed.

• Unbound proteins are free to diffuse.

• The profile of the photobleaching is given by a narrow band

so that we can reduce the problem to one spatial dimension.
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Model 1: A Simple Reaction-Diffusion Model
(Y. Tardy et al., 1995)

u(x, t) is the density of fluorescent biomolecules free to diffuse

v(x, t) is the density of bound fluorescent biomolecules

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) − kbu(x, t) + kuv(x, t)

∂

∂t
v(x, t) = kbu(x, t) − kuv(x, t)

Boundary conditions: no flux

Initial conditions: determined by photobleaching profile
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Solution for the Reaction-Diffusion Model

The theoretical fluorescence recovery curve is given by

R(t) =

∫ c+h

c−h
[u(x, t) + v(x, t)] dx.

R(t) can be solved for exactly - one obtains a messy expression

in terms of the model parameters kb, ku, and D.
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Fitting the Reaction-Diffusion Model to Data
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Quantitative Information Obtained

D = 0.4381µm2/s

kb = 0.0021s−1

ku = 0.0112s−1

Interpretation:

Proportion of GFP-actin in bound form: kb/(kb + ku) = 0.16

Proportion of GFP-actin free to diffuse: ku/(kb + ku) = 0.84

Average residency time of bound GFP-actin: 1/ku = 89 seconds

Average wandering time of free GFP-actin: 1/kb = 476 seconds
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Model 2: A Compartmental Model
(G. Carrero et al., 2003)
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The compartmental model can be written as a system of 6 or-

dinary differential equations in terms of 3 model parameters,

Dt = D1 +D2, kb, and ku. Since the system is linear, its solution

can be obtained easily.
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Solution for the Compartmental Model

The theoretical fluorescence recovery curve is given by

R(t) = u0 + v0

= 1 − γ exp(αt) − (1 − γ) exp(βt),

where α, β, and γ are known nonlinear functions of the three

model parameters kb, ku, and Dt.
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Fitting the Compartmental Model to Data
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Qualitative Behaviour of Fluorescence Recovery
Curves

The theoretical fluorescence recovery curves can exhibit different

qualitative types of behaviour depending on the relative magni-

tude of the binding and unbinding rate parameters kb and ku.

A perturbation analysis of the models leads to an elegant expla-

nation of two important limiting types of behaviour exhibited by

fluorescence recovery data, namely

1. Reduced diffusive behaviour

2. Biphasic behaviour
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Type 1: Reduced Diffusive Behaviour

kb = γb/ε and ku = γu/ε (rapid turnover)

In this case, the reaction-diffusion and compartmental models

reduce to simple diffusion models, but with reduced effective

diffusion coefficients:

Deff =
D

1 + k

where k = kb/ku
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Type 2: Biphasic Behaviour

kb = εγb and ku = εγu (slow turnover)

In this case, the fluorescence recovery curves exhibits two phases:

1) Fast diffusion phase (inner solution)

2) Slow turnover phase (outer solution)
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Concluding Remarks for Modelling Problem 1
(Mobility)

• A simple diffusion model does not provide a good fit for all

experimental fluorescence recovery data curves.

• A model taking into account diffusion plus a reversible bind-

ing process can give a much better fit to experimental fluo-

rescence recovery data.

• Two limiting types of behaviour can be characterized:

1. Reduced diffusive behaviour (caused by a rapid turnover)

2. Biphasic behaviour (caused by a slow turnover)
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Overview of Presentation

• Modelling problem 1: Mobility of nuclear proteins

• Modelling problem 2: Spatial organization of nuclear proteins
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Splicing Factors

• Splicing factors are proteins found

in the nucleus of a eukaryotic cell.

• Splicing factors move randomly

throughout the nucleus.

• Splicing factors remove introns

(noncoding sequences) from mRNA

before it is transported to the cyto-

plasm of the cell.

Image: www.biochemsoctrans.org/bst/032/0928/bst0320928f01.gif
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Splicing Factor Compartments (SFCs/speckles)

• SFCs are clusters within the cell

nucleus enriched with splicing

factors.

• During the interphase of the cell

cycle, splicing factors are con-

centrated in approximately 25–50

SFCs.

• During mitosis, the SFCs disassem-

ble.

Image: courtesy of Hendzel’s lab
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Modelling Problem 2 (Spatial Organization)

What is the mechanism responsible for the formation, mainte-

nance, and disassembly of Splicing Factor Compartments?

Outline

• Biological hypotheses and translation to mathematical model

• Model analysis

• Concluding remarks for the spatial organization problem
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Hypothesis 1: Self-Organization

• Splicing factors are in continuous flux
between the SFC’s and the nucleo-
plasm.

• Splicing factors exist in phosphorylated
and dephosphorylated forms.

• Increased phosphorylation promotes
the release of splicing factors from
SFC’s and disassembly of SFC’s.

• Increased dephosphorylation is re-
quired for the formation of SFC’s.

• Dephosphorylated splicing factors have
a tendency to self-interact; phosphory-
lated splicing factors do not.
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Hypothesis 2: Underlying Nuclear Scaffold

• Splicing factors move randomly within
the nucleus two orders of magnitude
slower than expected.

• The low mobility of the splicing factors
is attributed to rapid transient binding
to an underlying nuclear scaffold (ma-
trix).

• The existence of an underlying scaffold
is thought to be a major determinant
in the organization of splicing factors.
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Model Skeleton

∂v
∂t = D∂2v

∂x2 − δv + ρu

∂u
∂t = “motion and self-interaction term” + δv − ρu

v(x, t) = density of phosphorylated splicing factors
u(x, t) = density of unphosphorylated splicing factors
δ = dephosphorylation rate
ρ = phosphorylation rate
D = effective diffusion coefficient of splicing factors

Question:

What does the “motion and self-interaction term” look like?
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Deriving the “Motion and Self-Interaction Term”

Consider the following random walk:
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τ = size of the time step
λ = size of the space step
L(x, t), R(x, t) = probability that molecule located at position x

and time t moves one unit to the left, right
N(x, t) = 1 − L(x, t) − R(x, t)
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Deriving the “Motion and Self-Interaction Term”

The diffusion approximation leads to the following general Fokker-

Planck equation for the unphosphorylated splicing factors:

∂u

∂t
=

∂2(µu)

∂x2
−

∂(βu)

∂x

where

µ =
λ2

2τ
(R + L) = D(1 − N) “motility”

β =
λ

τ
(R − L) “bias”

Assumption: R = L, so that the bias term disappears

Question: How do we model the probability N(x, t)?
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Modelling the Probability N(x, t)

Assume that N(x, t) depends on the number of bound unphos-
phorylated splicing factors within a neighbourhood of size σ:

N(x, t) =
κ

ω

∫ ∞

−∞
H(s)u(x + s, t)ds

with kernel function

H(s) =

{

1
2σ for |s| ≤ σ
0 for |s| ≥ σ

-σ σ

H(s)

s

1/(2σ)

κ = aggregative sensitivity
ω = critical density dictated by space limitations
σ = range of detection

30



Deriving the “Motion and Self-Interaction Term”

The general Fokker-Planck equation was

∂u

∂t
=

∂2(µu)

∂x2
with µ = D(1 − N).

Using the Taylor expansion for u(x + s, t) about x in

N(x, t) =
κ

ω

∫ ∞

−∞
H(s)u(x + s, t)ds

and neglecting O(s4) terms yields the following PDE describ-

ing the motion and self-interaction of unphosphorylated splicing

factors:

∂u

∂t
=

∂

∂x

[

(D − 2Dκ
u

ω
)
∂u

∂x

]

−
∂2

∂x2

[(

Dκσ2

6

u

ω

)

∂2u

∂x2

]
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Summary of the Model

• The model skeleton from before:

∂v
∂t = D∂2v

∂x2 − δv + ρu

∂u
∂t = “motion and self-interaction term” + δv − ρu

• With the details filled in:

∂v
∂t = D∂2v

∂x2 − δv + ρu

∂u
∂t = ∂

∂x

[

(D − 2Dκu
ω)∂u

∂x

]

− ∂2

∂x2

[(

Dκσ2

6
u
ω

)

∂2u
∂x2

]

+ δv − ρu
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Model Analysis Part I:
The Aggregation-Diffusion Equation

In non-dimensionalized form, we have

∂u

∂t
=

∂

∂x

[

(1 − u)
∂u

∂x

]

−
∂2

∂x2

[(

σ2

12
u

)

∂2u

∂x2

]

subject to no-flux boundary conditions.

Observation: Any constant density u(x, t) = ueq is a uniform

steady state of this equation.

Question: Under what conditions does this equation exhibit

pattern formation (under what conditions is the uniform steady

state unstable)?
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Stability Analysis

• Linearize the PDE about the uniform steady state ueq to get

∂U

∂t
= (1 − ueq)

∂2U

∂x2
−

σ2

12
ueq

∂4U

∂x4
,

where U(x, t) is the deviation from ueq.

• Study the normal mode solutions of the form

U(x, t) = exp(λt + iqx),

where λ is the growth rate corresponding to the wave number

q.

• λ < 0 indicates that ueq is stable

λ > 0 indicates that ueq is unstable
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The Dispersion Relation

The dispersion relation summarizes the relationship between the

growth rate λ and the wavenumber q.

λ(    )

Instability

u
eq

q2
−

q2
+

q2

>1 

q2

u
eq<1 

Stability

• When ueq < 1, it is stable. When
ueq > 1, it is unstable.

• The condition ueq > 1 for instabil-
ity means that the population of
unphosphorylated splicing factors
must be sufficiently large for pat-
tern formation to occur.

• The fastest growing mode deter-
mines the spatial pattern.
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Sample Solutions

ueq = 0.9:

steady state is stable

(solution shown for t = 3)
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(solution shown for t = 0.25)
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Question: What is the effect of changing the value of σ?
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Dispersion Relation: Influence of σ
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Sample Solutions: Influence of σ

σ1 = 0.04

(solution at t = 0.25)

0 0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

1.3

x 

u(x,t) 

σ2 = 0.02

(solution at t = 0.05)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

x 

u(x,t) 

σ3 = 0.012

(solution at t = 0.01)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

x 

u(x,t) 

The smaller the range of detection σ, the more

SFC’s are formed.
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Model Analysis Part II:
The Aggregation-Reaction-Diffusion Equations
(in non-dimensionalized form)

∂v
∂t = ∂2v

∂x2 − δv + ρu

∂u
∂t = ∂

∂x

[

(1 − u)∂u
∂x

]

− ∂2

∂x2

[(

σ2

12u

)

∂2u
∂x2

]

+ δv − ρu

(subject to no-flux boundary conditions)

These equations also exhibit pattern formation (compartmental-

ization), provided the population of splicing factors is sufficiently

large.

Question of interest: How does the dephosphorylation param-

eter δ influence the compartmentalization?
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Steady States and the Dispersion Relation

σ = 0.05

ρ = 1
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For small values of δ, there is no compartmentalization.
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Sample Solutions

δ = 1

(veq, ueq) = (1,1)
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δ = 1.1

(veq, ueq) = (0.95,1.05)

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

x

u(x,t) 

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

x

v(x,t) 

41



Real Bifurcation

As δ increases, the uniform steady state (veq, ueq) becomes un-

stable at a real bifurcation when δ = δb.
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Question: How does the location of the real bifurcation depend

on the total amount of biomolecules present in the system?
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Regions of Stability and Instability
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Regions of Stability and Instability
in the (ρ, δ)-plane
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Predictions

• The formation of SFC’s is enhanced by increased dephos-

phorylation and/or an increased number of splicing factors.

• The number of SFC’s increases as the range of detection σ

decreases.

• No SFC’s are formed when the underlying nuclear scaffold is

removed/destroyed.
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Concluding Remarks for Modelling Problem 2
(Spatial Organization)

• We have developed a model that supports the hypothesis

that SFC’s are formed by a process of self-organization.

• The dynamic behaviour of the model is consistent with the

biological observation that a cycle of phosphorylation and

dephosphorylation modulates the aggregation of splicing fac-

tors.

• Future work includes the design of experiments to determine

parameter values and test the predictions of the model.

46


