Developmental second hits and the concept of a mutation field

David Hogg Department of Medicine University of Toronto Princess Margaret Hospital

Tumor progression – sequential mutations

Timing of genetic changes

- There is not always a set pattern of genetic changes as a cell progresses to malignancy.
- In other words, although 5-7 changes must occur to make a cell fully malignant, the order and timing of these alteration may be flexible.

Implications of progressive genetic alterations

- Cancers are not cells with "uncontrolled growth"!
- Loss of growth control occurs very slowly over several years, in a stepwise fashion.
- 1 Therefore, defining the genetic changes in a tumor will become as important as histological study.

Melanoma: a multistage process

Normal Skin

Benign Nevus

Dysplastic Nevus (DN)

Radial Growth Phase melanoma

Vertical Growth Phase melanoma

Melanoma family - example

Familial Cancer - Characteristics

Compared to the corresponding sporadic cancers:

- 1. Age at first presentation is lower
- 2. Tumors may present at multiple sites in the same tissue
- 3. Tumors may occur in different tissues
- 4. There may be a family history

Loss of a functional tumor suppressor gene

Normal

Mutation of one allele

Loss of remaining normal allele

Poisson distribution

 λ = Probability of an event

Probability of n events =

$$\frac{e^{-\lambda}\lambda^x}{n!}$$

Familial Cancer Syndrome

- 1. Tumor development is a stochastic process
- 2. Variable number of primary lesions (k)
- 3. Modeled by a Poisson distribution

$$P(k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Multiple primary melanoma

- 1 Between 2 and 8% of patients with melanoma will develop a second primary tumor
- 1 But: the lifetime incidence of sporadic melanoma is only 1 in 80 (1.25%)
- 1 Therefore, some factor must predispose the majority of multiple primary patients to additional tumors

Régine Mydlarski

Glomangiomas

- Subtype of venous malformations
- Raised, tender, blue-red nodules
- Solitary (sporadic) or multiple (inherited) forms

Histology

- Glomus cells
- Branching vascular channels
- Immuno
 - SMA α actin +
 - Vimentin +
 - Desmin -

Glomulin

(Brouillard et al. Am J Hum Genet, 2002)

- Sequence identity to *FAP68*
- Located on chromosome 1p22
- Function unknown
- ? Modulate signaling through TGFβ and/or HGF pathways

FAP68 (Glomulin)

Mutational Screening 157 del AAGAA

Unaffected

Affected

Laser Capture Microdissection

Pre-LCM Post-LCM

Loss of Heterozygosity

• Loss of the constitutional maternal or paternal allele of a gene AKDE005 - D1S 2776

Genomic DNA

Tumor DNA

Two hits revisited...

Genomic DNA

Tumor DNA

Solitary

Cluster

Cluster/Segmental

Segmental

Familial Cancer Syndrome

- 1. Tumor development is a stochastic process
- 2. Variable number of primary lesions
- 3. Modeled by a Poisson distribution

$$P(k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Developmental Model

Goals of Mathematical Model

- 1. Explain morphological patterns of GVM
- 2. Account for differing frequencies of these patterns
- 3. Understand developmental dependence of GVM distribution

Assumption #1

Mammalian organisms arise from a single fertilized ovum, and in the case of humans, multiply to ~10¹⁴ cells

Assumption #2

In the development of tissues and organs, an early stem cell is programmed to pass through a series of conceptual compartments containing progressively differentiated progenitors

Branching Hypothesis

Assumption #3

The numbers of immediate progeny from parental cells are independent, identically distributed Poisson variables

Branching Hypothesis

- If a gene is mutated early in development, it will exist in its mutated form in all subsequent progeny
- As the number of progeny may be very large, the overall probability of a cell possessing this mutation is increased

$$P(k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

To derive a branching Poisson distribution, we employ the generating function:

$$G(s) = E(s^k)$$

The generating function for the Poisson distribution is:

$$G(s) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} s^k$$
$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!}$$
$$= e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

 $G_n(s) = G(G(...(G(s))...))$

The generating function for a 2-level Poisson branching process is:

$$G_2(s) = e^{\lambda(e^{\lambda(s-1)}-1)}$$

To recover the probability of observing k progeny at n branches :

$$P_n(k) = \frac{\partial^k G_n(s)}{\partial s^k} \frac{1}{k!} \bigg|_{s=0}$$

Let μ be the probability of a mutation. To scale the probability of a mutation Occurring in each compartment, we multiply by $1/\lambda$:

$$P(n) = \frac{\mu}{\lambda^n}$$

We ignore μ ; however, we must Scale the sum of all P(n), since it is > 1:

$$\sum_{n=0}^{\infty} \frac{1}{\lambda^n} = \frac{\lambda}{\lambda - 1}$$

The probability of mutation arising in compartment n is given by:

$$P_c(n) = \frac{(\lambda - 1)}{\lambda^{n+1}}$$

Therefore, the pmf of the combined Poisson branching process over all compartments becomes:

$$P(k) = \sum_{n=1}^{\infty} P_c(n) P_n(k)$$

The final curves that we construct are derived from:

$$P(k) \square \sum_{n=1}^{3} P_c(n) P_n(k)$$

Maximum Likelihood Estimate

 The likelihood function, L, is proportional to the probability of observing the data set, θ, given the pdf, y

$$L(\theta|y)$$

- An MLE requires:
 - A data set the number of GVM/cluster
 - A probability distribution simple or branching Pd

Maximum Likelihood Estimate

-In(MLE)

Maximum Likelihood Estimation

Model Predictions

- 1. Estimates the relative numbers of lesion types in our data set
- 2. Predicts that all lesions within a cluster should bear an identical second hit
- 3. Explain the morphology of a cluster
- 4. Estimate the mutation frequency of wt *FAP68* allele

Observed and Predicted Patterns of Hereditary GVMs

Model Predictions

- 1. Estimate the relative numbers of lesion types in our data set
- 2. All lesions within a cluster should bear an identical second hit
- 3. Explains morphology of a cluster
- 4. Estimate mutation frequency of wt *FAP68* allele

Clonality

- Cluster containing 6 GVM biopsied from affected female patient
- Nonrandom XCI in GVM and NHK
- LOH absent in all 6 GVM
- No coding mutations (sequenced 19 exons)
- Methylation studies pending

Model Predictions

- 1. Estimate the relative numbers of lesion types in our data set
- 2. All lesions within a cluster should bear an identical second hit
- 3. Explains morphology of a cluster
- 4. Estimate mutation frequency of wt *FAP68* allele

Morphology of a Cluster

- Each GVM arose from the proliferation of a single GC
- 20 90 capillary loops/mm²
- Small cluster size: 10 cm² (~5X10⁴ cap loops)
- On average, 1/10⁴ cells bear a second hit

Model Predictions

- 1. Estimate the relative numbers of lesion types in our data set
- 2. All lesions within a cluster should bear an identical second hit
- 3. Explains morphology of a cluster
- 4. Estimate mutation frequency of wt *FAP68* allele

Estimate of Mutation Frequency

- BSA ~ 1.6 m^2 (~ 8×10^7 capillary loops)
- Mean number of ~8 discrete lesions/patient
- Mutation rate, μ , of $\sim 10^{-7}$

Implications of model - I

The developmental timing of a second hit is mapped onto a spatial distribution

Larger Clusters

Branching Hypothesis

Sampling progenitors from a compartment

Penultimate compartment

Summary

- FAP68 mutations co-segregate with disease
- Founder mutation: 157 delAAGAA
- Novel mutation: 1293delA + 1296delAAA
- Two hits required for the development of multiple GVM
- Development of mathematical model

Implications of Model

- Map the developmental hit to a spatial distribution
- Predict the clinical presentation when changing parameters μ and λ

In Appreciation

Dr. David Hogg Dr. Alfons Krol Dr. Phil Marsden Hogg Lab Members

Canadian Dermatology Foundation