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Geometric Invariant Theory

G Y X
N N X/G 7
SL(n+1,C)

\

Quotient not Hausdorff (not separated).

GG-action not proper.

GIT chooses certain “unstable” orbits to re-
move to give a projective quotient. Also identi-
fies some ‘“semistable” orbits to compactify.

(X,L=0(1) +— PH X, 0()),
X/G +— @PHO(X,00)C.

(fi=0=...=fi) CP"

(fla"'afk) .

G acts on C**t1 so on O(—=1) = P* so on O(r) = X.
HO(X,0(r)) = {degree r homogeneous polynomials on X C Crt+1}.
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r € X semistable iff 3f € HO(X,0(r))¢ such
that f(z) # O.

So the Kodaira "“embedding” of X/G,
X -+ P((HO(X,0(r)9)*)

is well defined at =z.

z is stable iff @, HO(X, O(r))C separates orbits
at x and the stabiliser of z is finite.

Theorem 1 [Mumford]

r is stable <= G.7 is closed in C*t1 and
dimG.x = dimdG.

(G.% just closed = polystable.)

r is semistable <— 0¢ G.7.



Theorem 2 [Hilbert-Mumford criterion]

The same result is true iff it is true for all one
parameter subgroups (1-PS) C* C SL(n+1,C).
So everything reduces to the C*-action on the
line over the limit point xg = limy_,o A.x.

xo fixed point of C*-action, so get action on O,,(—1).

Weight p € 7 of action, A — AP,

e p < O stable
e p = 0 semistable

e p > 0 unstable

So “just” compute this weight for all C* C
SL(n+ 1,C); x is stable <= weight always
< 0.

Ox(—1)
stable

7
% semistable
unstable
I X

C*.x o




Fundamental example — points in P!
n points in Pl « 0-dim algebraic subvariety!

(Points with multiplicities < length-n 0-dim subscheme)

SL(2,C) ~ Pl = P(C2)
= SL(2,C) ~ S"(C2)*
= {degn polys on C?} = HO(Op1(n)).

But {n points} = P(H®(Op1(n))) as roots of
the degree n polynomial.

Theorem 3 n points in PL.
Semistable <= each multiplicity < n/2.
Stable <= each multiplicity < n/2.



Proof. Diagonalise a given C* C SL(2,C) :

A0 . 1
0 -k w.r.t. [z : y] coords on P*. (k > 0.)

Polynomial f=>""1", a;xly" ",
A.f tends to oo iff there are more ys than xs in
a nonzero summand.

I.e. stable unless a; = 0 for i < n/2.

Alternatively, use Hilbert-Mumford criterion.
After rescaling, A.f — fo = a;z/y"™/, where j
is smallest such that a; # 0.

(f = ajaly" (1 + “2zy=t 4 ....)

Weight on C.fg is k(j —(n —3j)) = k(25 — n).

So stable <= k(2j—n) <0 < j < n/2 <
f vanishes to order < n/2 at z = 0 VC* C
SL(2,C). ]



Svymplectic reduction

G Cc SL(N + 1,C) has compact subgroup K =
GNSU(N+1). g=t+it.
K acts on PV, preserves J and g, and so w too.

So Yv € ¢ = LK the infinitesimal action X, is
Hamiltonian, X, Jw = dmy.

Gives moment map m: X — ¢*.
(Collection of r hamiltonians m,, r = dim K.)

my = derivative down (0,00) C C* orbit of
log ||)\:T:||)\€(O’OO), i.e. down JX, = X,,.

m(v) =0

C.z \ i (Poly)Stable <= [|A\Z]]
achieves min on all C*-orbits
<— m(v) = 0 somewhere

on orbit Yu.



Theorem 4 [Kempf-Ness]

NS

X Tn_l(O).

G-orbit

/ m~1(0)

unstable G-orbit
N\

m~1(0) provides slice to it C g = ¢ + it part of
orbit; K-equivariant.

E.g. U(1) C C* ~ C", moment map = |z|°—aZ.

C\{0} o $"'={z: |z°=0a"} o

pr—1,
C* U(1)




E.g. n points in P! again.

SL(2,C) D SU(2) ~n P 2 su(2)*

is the inclusion S2 c R3.

Adding gives, for n points, m =} "', m;:
s*pl s R3,

the sum of n points in R3 (“centre of mass”).

So m~1(0) = {Balanced configurations}
(Centre of mass 0 € R3).

Stable <= 3 SL(2,C) transformation of P!
such that points are balanced
<= mass at each point < n/2.

Pl

(Note that balanced n/z©n/z has dim 1 stabiliser.)



Polarised algebraic varieties (X, L)
X - PHOY(X, LN =PV, r>o0.

Defines a point in Hilbo c Gr ¢ PM by the sub-
space

HO®N, 7x(k)) c HOPY,0(k)) = S*HO(X, L")
of deg k polys on P¥ vanishing on X.
ILe. point of AYMENAEDGREO(X 7Y, v k> 0.

Divide by autos SL(N+1,C) of PV to get mod-
uli of polarised varieties.

Choice of line bundle on Hilb = notion of sta-
bility for (X, L).



Moment map for appropriate ample line bun-
dle / symplectic structure on Hilb.

Let m: PN — su(N + 1)* denote the usual mo-
ment map.

Then moment map takes X C PN to the centre
of mass

/Xm VOlpg € su(N 4 1)*.

Zeros of moment map = Balanced varieties
X Cc PN,

Theorem 5 [Zhang/Luo] Balanced -+ finite
automorphism group = HM stable.

Asr — oo (= N — o©) moment map has an ex-
pansion (Catlin, Z. Lu, W.-D. Ruan, Tian, Zelditch)
involving s = scalar curvature of gpo. Roughly,
pbalanced metrics ‘‘tend towards’ cscK metrics
with [w] = [e1(L)].
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Theorem 6 [Donaldson] (Aut(X) discrete.)
(X, L) admits cscK metricin [c1(L)] = (X,L")
balanced for r > 0.

(Zhang/Luo = HM-stable, Chen-Tian = K-
stable.)

Partial result in converse direction: If (X,L") c PN
balanced for » > 0 and resulting Wrg convergent, then
limit metric has csc. Also generalisation due to Mabuchi
for arbitrary X.

Donaldson also gives an infinite dimensional
GIT/moment map formulation.

(Think of as limr — oo, where balanced condition has
become cscK condition.)

(Hamiltonian diffeomorphisms) ~ (X,w = ¢1(L))
so n~ {compatible complex structures on X}.

Moment map = scalar curvature + const.

Zeros = cscK metrics.
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(When L = Ki', w = Fc1(X), cscK=KE. Yau sug-
gested the relationship stability < KE metrics. Tian
proved this for surfaces and also suggested the general

polarisation / cscK relationship.)

So we have the infinite dimensional analogue
of the balanced condition for points in P1 (i.e.
cscK metrics) and part of the relationship to
stability (Donaldson, Luo), but not the algebro-
geometric description of stability. I.e. the
Hilbert-Mumford criterion, giving the analogue
of the < n/2 points condition, is missing.

In the bundle case, all of these ingredients are
worked out.
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Moduli of bundles over (X, L)

Given E — X, form E(r) ;= E® L" for r > 0,

HY%E(r)) — E(r) — 0 on X.

Gives map X — Gr. Action of SL(HO(E(r)))
on Maps(X, Gr). Gr C PN C su(N + 1)*.

So can again talk about balanced X — Gr and
asymptotics as r, N(r) — oo.

Stable bundles admit balanced maps X — Gr.
Pulling back the canonical quotient connection
on Gr gives, in the limit, a HYM connection
(X.-W. Wang. Donaldson-Uhlenbeck-Yau: polystable
= HYM. This connection is then unique).

Ativah-Bott gave an infinite dimensional GIT
/ moment map formulation.

U(FE) = {unitary gauge transformations},

A = {connections A with FE{Q = 0}.

U(E) ~ A.

Moment map = HYM = "1 /\Fjl’l.
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In this case HM-criterion can be manipulated
(Gieseker, Maruyama, Simpson) tO give an algebro-
geometric understanding of stability.

Hilbert poly hO(E(r)) = agr™ +a1r” 1 + ...
a0 =rkE [, w"/n!, a1 = chl(E).w"_l/(n — D4 e(X).

Reduced Hilbert poly pn(r) = rn_|_“1 n—14
E stable <= VF < E, pp(r) <pg(r) r>0.

a1(F) a1(FE)
= () < agB)
— u(F) < u(E).

FE slope-stable

(u(E) = Ix c1(E).w™ 1/ rk (E). Corresponds to a differ-
ent line bundle on moduli space — Jun Li.)

So bundles/sheaves destabilised by subsheaves
F C E. Can P(F) C P(FE) destabilise as vari-
eties ? Can subschemes Z C (X, L) destabilise?
(cf. length > n/2 subschemes of n points in P!.)
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A C* ¢ SL(M + 1,C) orbit of X € Hilbc PM
gives a C*-equivariant flat family (test con-
figuration) 2 — C

(3{/1/‘07[/0) (%71—/1&) = (X7 L)
Vit £ O

C

For the HM-criterion one calculates the weight
wy.j, Of the C*-action on

/\maXHO(EtVO,LBk)* R /\maXS’kHO(%O,LB).

Wy = a1 (ME" T+ an(r)k™ + ...,

where

a;(r) = a;,r" + ai,n_lfrn_l +....
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Definition 7 The C* ¢ SL(M + 1,C) desta-
bilises (X, L) if w, > 0 in the following sense:

e HM(r)-unstable: w,; > 0 for all k> O,

e Asymptotically HM-unstable: for all r >
0, wpp >0 for all k> 0,

e Chow(r)-unstable: leading k"t 1-coefficient
a’n-l—l(r) > 0,

o Asymptotically Chow unstable: a,41(r) >
O forr >0,

e K-unstable: leading coefficient a,41 4, > 0.

These correspond to different line bundles on Hilb: the
standard one, the Chow line, and the Paul-Tian line.
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Slope for K-stability
Z C (X,L)

hO(Ox(r)) =agr® +a1r™ 1 + ...

hO(IZ"(r)) = ag(z)r™ + ag(z)r™ 4+ ...

a;(x) polynomials in x € QN [0,e(Z)) for r > 0.
(Seshadri constant e(Z) defined so that .#7"(r) gener-
ated by global sections for z < e(Z) for r > 0).

ao(O) = ap, and al(O) = a1 for X normal.

wa" . _chl(X)w'”'_l
nt Ot T T 2(m— 1)

apg —

For any ¢ < e(Z), define slope of Z to be

J§a1(x) + 205 dz

(Fz) =
Z = gives
w(x) =21,
ag
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Theorem 8

K-(semi)stable — slope (semi)stable:
we(F7) < u(X) V closed subschemes Z C X.
(K-stability: p.(#z) < w(X) Ve € (0,e(Z)) and Ve €
(0,e(2)] if e(Z) € Q and f;@)’“(r) saturated by global

sections for r > 0.)

Corollary 9

If ue(F2) > u(X) then X admits no cscK met-
ric in the class of ¢1(L).

(Donaldson/Zhang/Luo & Chen-Tian: cscK — K-

semistable.)

Examples.

e ' C E destabilising subbundle — P(F) C
P(E) destabilises, for suitable polarisations
L™ @ Opgy(1), m > 0. And for all pol-
sraisations if the base is a curve, in which
case P(F) is cscK < E is HYM.
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e —1-curves on del Pezzo surfaces for appro-
priate L. So Aut (X) reductive (or trivial)
does not imply cscK (unless L # K—l, by
Tian).

e P2 blown up in one point. Aut(X) not
reductive — not stable. Destabilised by
the —1-curve for all polarisations.

e Generically stable varieties can specialise to
unstable ones. Move two —1-curves to-
gether on a del Pezzo to give a limit —2-
curve.

(Blow up 2 “infinitely near” points: blow up one,
then another on the exceptional curve.)
The —2-curve destabilises for suitable L.

e Calabi-Yau manifolds, and varieties with canon-
ical singularities and mKyx ~ 0 are slope

stable.
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e Canonically polarised varieties with canon-
ical singularities (i.e. the canonical models
of Mori theory) are slope stable.

e Curves are K-stable (P! is K-polystable).



