Constant scalar curvature Kähler metrics and stability of algebraic varieties

Joint work with JULIUS ROSS

- 1. Geometric Invariant Theory
- 2. Symplectic reduction
- 3. Balanced varieties, cscK metrics
- 4. Bundle analogue
- 5. Stability of algebraic varieties

Geometric Invariant Theory

$$G \cap X \cap X \cap X/G$$
? $SL(n+1,\mathbb{C}) \cap \mathbb{P}^n$

G-action not proper.

Quotient not Hausdorff (not separated).

GIT chooses certain "unstable" orbits to remove to give a projective quotient. Also identifies some "semistable" orbits to compactify.

$$(X, L = \mathfrak{O}(1)) \longleftrightarrow \bigoplus_{r} H^{0}(X, \mathfrak{O}(r)),$$
 $X/G \longleftrightarrow \bigoplus_{r} H^{0}(X, \mathfrak{O}(r))^{G}.$
 $(f_{1} = 0 = \ldots = f_{k}) \subset \mathbb{P}^{n} \longleftrightarrow \frac{\mathbb{C}[x_{0}, \ldots, x_{n}]}{(f_{1}, \ldots, f_{k})}.$

G acts on \mathbb{C}^{n+1} so on $\mathbb{O}(-1) \to \mathbb{P}^n$ so on $\mathbb{O}(r) \to X$. $H^0(X,\mathbb{O}(r)) = \{ \text{degree } r \text{ homogeneous polynomials on } \widetilde{X} \subset \mathbb{C}^{n+1} \}.$

 $x \in X$ semistable iff $\exists f \in H^0(X, \mathcal{O}(r))^G$ such that $f(x) \neq 0$.

So the Kodaira "embedding" of X/G,

$$X \longrightarrow \mathbb{P}((H^0(X, \mathcal{O}(r))^G)^*)$$

is well defined at x.

x is *stable* iff $\bigoplus_r H^0(X, \mathcal{O}(r))^G$ separates orbits at x and the stabiliser of x is finite.

Theorem 1 [Mumford]

x is stable \iff $G.\tilde{x}$ is closed in \mathbb{C}^{n+1} and $\dim G.\tilde{x} = \dim G$.

 $(G.\tilde{x} \text{ just closed} = \text{polystable.})$ $x \text{ is semistable} \iff 0 \not\in \overline{G.\tilde{x}}.$

Theorem 2 [Hilbert-Mumford criterion]

The same result is true iff it is true for all one parameter subgroups (1-PS) $\mathbb{C}^* \subset SL(n+1,\mathbb{C})$. So everything reduces to the \mathbb{C}^* -action on the line over the limit point $x_0 = \lim_{\lambda \to 0} \lambda.x$. x_0 fixed point of \mathbb{C}^* -action, so get action on $\mathfrak{O}_{x_0}(-1)$.

Weight $\rho \in \mathbb{Z}$ of action, $\lambda \mapsto \lambda^{\rho}$,

- ρ < 0 stable
- $\rho = 0$ semistable
- $\rho > 0$ unstable

So "just" compute this weight for all $\mathbb{C}^* \subset SL(n+1,\mathbb{C})$; x is stable \iff weight always < 0.

Fundamental example – points in \mathbb{P}^1

n points in $\mathbb{P}^1 \leftrightarrow 0$ -dim algebraic subvariety!

(Points with multiplicities \leftrightarrow length-n 0-dim subscheme)

$$\begin{split} SL(2,\mathbb{C}) \curvearrowright \mathbb{P}^1 &= \mathbb{P}(\mathbb{C}^2) \\ \Rightarrow SL(2,\mathbb{C}) \curvearrowright S^n(\mathbb{C}^2)^* \\ &= \{\deg n \text{ polys on } \mathbb{C}^2\} = H^0(\mathfrak{O}_{\mathbb{P}^1}(n)). \end{split}$$

But $\{n \text{ points}\} = \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^1}(n)))$ as roots of the degree n polynomial.

Theorem 3 n points in \mathbb{P}^1 . Semistable \iff each multiplicity $\leq n/2$. Stable \iff each multiplicity < n/2. *Proof.* Diagonalise a given $\mathbb{C}^* \subset SL(2,\mathbb{C})$:

$$\begin{pmatrix} \lambda^k & 0 \\ 0 & \lambda^{-k} \end{pmatrix}$$
 w.r.t. $[x:y]$ coords on \mathbb{P}^1 . $(k \ge 0.)$

Polynomial $f = \sum_{i=0}^{n} a_i x^i y^{n-i}$.

 $\lambda.f$ tends to ∞ iff there are more ys than xs in a nonzero summand.

I.e. stable unless $a_i = 0$ for $i \leq n/2$.

Alternatively, use Hilbert-Mumford criterion.

After rescaling, $\lambda f \to f_0 = a_j x^j y^{n-j}$, where j is smallest such that $a_j \neq 0$.

$$(f = a_j x^j y^{n-j} (1 + \frac{a_{j+1}}{a_i} x y^{-1} + \dots))$$

Weight on $\mathbb{C}.f_0$ is k(j-(n-j))=k(2j-n).So stable $\iff k(2j-n)<0 \iff j< n/2 \iff f$ vanishes to order < n/2 at $x=0 \ \forall \mathbb{C}^* \subset SL(2,\mathbb{C}).$

Symplectic reduction

 $G \subset SL(N+1,\mathbb{C})$ has compact subgroup $K = G \cap SU(N+1)$. $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$.

K acts on \mathbb{P}^N , preserves J and g, and so ω too.

So $\forall v \in \mathfrak{k} = LK$ the infinitesimal action X_v is Hamiltonian, $X_v \,\lrcorner\, \omega = dm_v$.

Gives moment map $m: X \to \mathfrak{k}^*$. (Collection of r hamiltonians m_v , $r = \dim K$.)

 $m_v=$ derivative down $(0,\infty)\subset \mathbb{C}^*$ orbit of $\log ||\lambda \tilde{x}||_{\lambda \in (0,\infty)}$, i.e. down $JX_v=X_{iv}$.

(Poly)Stable $\iff ||\lambda \tilde{x}||$ achieves min on all \mathbb{C}^* -orbits $\iff m(v) = 0$ somewhere on orbit $\forall v$.

Theorem 4 [Kempf-Ness]

$$\frac{X}{G} \cong \frac{m^{-1}(0)}{K}.$$

 $m^{-1}(0)$ provides slice to $i\mathfrak{k}\subset\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$ part of orbit; K-equivariant.

E.g. $U(1) \subset \mathbb{C}^* \curvearrowright \mathbb{C}^n$, moment map $= |\underline{z}|^2 - a^2$.

$$\frac{\mathbb{C}^n \setminus \{0\}}{\mathbb{C}^*} \cong \frac{S^{2n-1} = \{\underline{z} : |\underline{z}|^2 = a^2\}}{U(1)} \cong \mathbb{P}^{n-1}.$$

E.g. n points in \mathbb{P}^1 again.

$$SL(2,\mathbb{C})\supset SU(2)\curvearrowright \mathbb{P}^1 \xrightarrow{m} \mathfrak{su}(2)^*$$

is the inclusion $S^2 \subset \mathbb{R}^3$.

Adding gives, for n points, $m = \sum_{i=1}^{n} m_i$:

$$S^n\mathbb{P}^1 \longrightarrow \mathbb{R}^3$$
,

the sum of n points in \mathbb{R}^3 ("centre of mass").

So $m^{-1}(0) = \{ \text{Balanced configurations} \}$ (Centre of mass $0 \in \mathbb{R}^3$).

Stable $\iff \exists SL(2,\mathbb{C})$ transformation of \mathbb{P}^1 such that points are balanced \iff mass at each point < n/2.

(Note that balanced n/2 has dim 1 stabiliser.)

Polarised algebraic varieties (X, L)

$$X \hookrightarrow \mathbb{P}(H^0(X, L^r)^*) = \mathbb{P}^N, \quad r \gg 0.$$

Defines a point in $\operatorname{Hilb} \subset Gr \subset \mathbb{P}^M$ by the subspace

$$H^0(\mathbb{P}^N,\mathscr{I}_X(k))\subset H^0(\mathbb{P}^N,\mathbb{O}(k))=S^kH^0(X,L^r)$$
 of deg k polys on \mathbb{P}^N vanishing on X .

I.e. point of
$$\Lambda^{\dim H^0_{\mathbb{P}^N}(\mathscr{I}_X(k))}S^kH^0(X,L^r), \quad r,k\gg 0.$$

Divide by autos $SL(N+1,\mathbb{C})$ of \mathbb{P}^N to get moduli of polarised varieties.

Choice of line bundle on Hilb \Rightarrow notion of stability for (X, L).

Moment map for appropriate ample line bundle / symplectic structure on Hilb.

Let $m: \mathbb{P}^N \to \mathfrak{su}(N+1)^*$ denote the usual moment map.

Then moment map takes $X\subset \mathbb{P}^N$ to the centre of mass

$$\int_X m \operatorname{vol}_{FS} \in \mathfrak{su}(N+1)^*.$$

Zeros of moment map = Balanced varieties $X \subset \mathbb{P}^N$.

Theorem 5 [Zhang/Luo] Balanced + finite automorphism group \Rightarrow HM stable.

As $r \to \infty$ ($\Rightarrow N \to \infty$) moment map has an expansion (Catlin, Z. Lu, W.-D. Ruan, Tian, Zelditch) involving s= scalar curvature of g_{FS} . Roughly, balanced metrics "tend towards" cscK metrics with $[\omega]=[c_1(L)]$.

Theorem 6 [Donaldson] (Aut(X) discrete.) (X,L) admits cscK metric in $[c_1(L)] \Rightarrow (X,L^r)$ balanced for $r \gg 0$.

 $(Zhang/Luo \Rightarrow HM-stable, Chen-Tian \Rightarrow K-stable.)$

Partial result in converse direction: If $(X,L^r)\subset \mathbb{P}^{N(r)}$ balanced for $r\gg 0$ and resulting $\omega_{FS,r}$ convergent, then limit metric has csc. Also generalisation due to Mabuchi for arbitrary X.

Donaldson also gives an infinite dimensional GIT/moment map formulation.

(Think of as $\lim r \to \infty$, where balanced condition has become cscK condition.)

(Hamiltonian diffeomorphisms) \curvearrowright $(X, \omega = c_1(L))$ so \curvearrowright {compatible complex structures on X }.

Moment map = scalar curvature + const.

Zeros = cscK metrics.

(When $L = K_X^{\pm 1}$, $\omega = \mp c_1(X)$, cscK=KE. Yau suggested the relationship stability \leftrightarrow KE metrics. Tian proved this for surfaces and also suggested the general polarisation / cscK relationship.)

So we have the infinite dimensional analogue of the balanced condition for points in \mathbb{P}^1 (i.e. cscK metrics) and part of the relationship to stability (Donaldson, Luo), but not the algebrogeometric description of stability. I.e. the Hilbert-Mumford criterion, giving the analogue of the < n/2 points condition, is missing.

In the bundle case, *all* of these ingredients are worked out.

Moduli of bundles over (X, L)

Given $E \to X$, form $E(r) := E \otimes L^r$ for $r \gg 0$, $H^0(E(r)) \to E(r) \to 0$ on X.

Gives map $X \to Gr$. Action of $SL(H^0(E(r)))$ on Maps(X, Gr). $Gr \subset \mathbb{P}^N \subset \mathfrak{su}(N+1)^*$.

So can again talk about balanced $X \to Gr$ and asymptotics as $r, N(r) \to \infty$.

Stable bundles admit balanced maps $X \to Gr$. Pulling back the canonical quotient connection on Gr gives, in the limit, a HYM connection (X.-W. Wang. Donaldson-Uhlenbeck-Yau: polystable \Rightarrow HYM. This connection is then unique).

Atiyah-Bott gave an infinite dimensional GIT / moment map formulation.

 $U(E) = \{ unitary gauge transformations \},$

 $\mathcal{A} = \{\text{connections } A \text{ with } F_A^{0,2} = 0\}.$

 $U(E) \curvearrowright \mathcal{A}$.

Moment map = HYM = $\omega^{n-1} \wedge F_A^{1,1}$.

In this case HM-criterion can be manipulated (Gieseker, Maruyama, Simpson) to give an algebrogeometric understanding of stability.

Hilbert poly
$$h^0(E(r)) = a_0 r^n + a_1 r^{n-1} + \dots$$

 $a_0 = \operatorname{rk} E \int_X \omega^n / n!, \quad a_1 = \int_X c_1(E) \cdot \omega^{n-1} / (n-1)! + \varepsilon(X).$

Reduced Hilbert poly $p_E(r) = r^n + \frac{a_1}{a_0} r^{n-1} + \dots$

$$E \text{ stable } \iff \forall F \hookrightarrow E, \ p_F(r) < p_E(r) \quad r \gg 0.$$

$$E \text{ slope-stable} \iff \frac{a_1(F)}{a_0(F)} < \frac{a_1(E)}{a_0(E)} \iff \mu(F) < \mu(E).$$

 $(\mu(E) = \int_X c_1(E) \cdot \omega^{n-1} / \operatorname{rk}(E)$. Corresponds to a different line bundle on moduli space — Jun Li.)

So bundles/sheaves destabilised by subsheaves $F \subset E$. Can $\mathbb{P}(F) \subset \mathbb{P}(E)$ destabilise as varieties? Can subschemes $Z \subset (X,L)$ destabilise? (cf. length $\geq n/2$ subschemes of n points in \mathbb{P}^1 .)

A $\mathbb{C}^* \subset SL(M+1,\mathbb{C})$ orbit of $X \in Hilb \subset \mathbb{P}^M$ gives a \mathbb{C}^* -equivariant flat family (**test configuration**) $\mathscr{X} \to \mathbb{C}$

For the HM-criterion one calculates the weight $w_{r,k}$ of the \mathbb{C}^* -action on

$$\Lambda^{\max} H^0(\mathscr{X}_0, L_0^{rk})^* \otimes \Lambda^{\max} S^k H^0(\mathscr{X}_0, L_0^r).$$

$$w_{r,k} = a_{n+1}(r)k^{n+1} + a_n(r)k^n + \dots,$$

where

$$a_i(r) = a_{in}r^n + a_{i,n-1}r^{n-1} + \dots$$

Definition 7 The $\mathbb{C}^* \subset SL(M+1,\mathbb{C})$ destabilises (X,L) if $w_{r,k} \succ 0$ in the following sense:

- ullet HM(r)-unstable: $w_{r,k}>$ 0 for all $k\gg$ 0,
- Asymptotically HM-unstable: for all $r\gg 0,\ w_{r,k}>0$ for all $k\gg 0,$
- Chow(r)-unstable: leading k^{n+1} -coefficient $a_{n+1}(r) > 0$,
- Asymptotically Chow unstable: $a_{n+1}(r) > 0$ for $r \gg 0$,
- K-unstable: leading coefficient $a_{n+1,n} > 0$.

These correspond to different line bundles on Hilb: the standard one, the Chow line, and the Paul-Tian line.

Slope for K-stability

$$Z \subset (X, L)$$

$$h^{0}(\mathcal{O}_{X}(r)) = a_{0}r^{n} + a_{1}r^{n-1} + \dots$$

$$h^{0}(\mathscr{I}_{Z}^{xr}(r)) = a_{0}(x)r^{n} + a_{1}(x)r^{n-1} + \dots$$

 $a_i(x)$ polynomials in $x \in \mathbb{Q} \cap [0, \epsilon(Z))$ for $r \gg 0$. (Seshadri constant $\epsilon(Z)$ defined so that $\mathscr{I}_Z^{xr}(r)$ generated by global sections for $x < \epsilon(Z)$ for $r \gg 0$).

 $a_0(0) = a_0$, and $a_1(0) = a_1$ for X normal.

$$a_0 = \frac{\int_X \omega^n}{n!}, \ a_1 = \frac{\int_X c_1(X)\omega^{n-1}}{2(n-1)!}.$$

For any $c \leq \epsilon(Z)$, define slope of Z to be

$$\mu_c(\mathscr{I}_Z) = \frac{\int_0^c a_1(x) + \frac{a_0'(x)}{2} dx}{\int_0^c a_0(x) dx}.$$

 $Z = \emptyset$ gives

$$\mu(X) = \frac{a_1}{a_0}.$$

Theorem 8

K-(semi)stable \Longrightarrow slope (semi)stable: $\mu_c(\mathscr{I}_Z) \leq \mu(X) \ \forall \ closed \ subschemes \ Z \subset X$. (K-stability: $\mu_c(\mathscr{I}_Z) < \mu(X) \ \forall c \in (0, \epsilon(Z)) \ and \ \forall c \in (0, \epsilon(Z)) \ if \ \epsilon(Z) \in \mathbb{Q} \ and \ \mathscr{I}_Z^{\epsilon(Z)r}(r) \ saturated \ by \ global \ sections \ for \ r \gg 0$.)

Corollary 9

If $\mu_c(\mathscr{I}_Z) > \mu(X)$ then X admits no cscK metric in the class of $c_1(L)$.

(Donaldson/Zhang/Luo & Chen-Tian: $cscK \implies K$ semistable.)

Examples.

• $F \subset E$ destabilising subbundle $\Longrightarrow \mathbb{P}(F) \subset \mathbb{P}(E)$ destabilises, for suitable polarisations $\pi^*L^m \otimes \mathcal{O}_{\mathbb{P}(E)}(1), \ m \gg 0$. And for **all** polarisations if the base is a curve, in which case $\mathbb{P}(E)$ is cscK $\leftrightarrow E$ is HYM.

- -1-curves on del Pezzo surfaces for appropriate L. So Aut (X) reductive (or trivial) does not imply cscK (unless $L \neq K^{-1}$, by Tian).
- \mathbb{P}^2 blown up in one point. Aut (X) not reductive \Longrightarrow not stable. Destabilised by the -1-curve for all polarisations.
- Generically stable varieties can specialise to unstable ones. Move two -1-curves together on a del Pezzo to give a limit -2curve.

(Blow up 2 "infinitely near" points: blow up one, then another on the exceptional curve.) The -2-curve destabilises for suitable L.

• Calabi-Yau manifolds, and varieties with canonical singularities and $mK_X\sim 0$ are slope stable.

ullet Curves are K-stable (\mathbb{P}^1 is K-polystable).