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Introduction 1: Open/closed duality'

Topological open string el Topological closed string

Prototype example (Gopakumar-Vafa): A-model

Open string on deformed conifold 7*S3 with N D-branes
wrapping 93
(= Chern-Simons theory on S® via Witten’s work)

{ dual

Closed string on resolved conifold O(—1) ® O(—1) — P!
with Kahler modulus ¢t = g, IV

e T*S3 has a natural symplectic structure in which
S3 C T*S3 is a Lagrangian submanifold = D-branes

e Large N duality implies in particular

Zopen,T* S3 (987 N)
chosed,@(—1)69(9(—1)—>P1 (937 t = gsN)



Introduction 2: Calabi-Yau crystals'

As a Calabi-Yau, take C3.

A-model partition function

s 1
Z = H—.., q:=e 9
s (1—g7)

=1 M(q)

<

M(q) is known as the McMahon function.



McMahon showed that M(q) is the partition function of a
classical statistical model:

1.

The positive octant of R® and a cubic lattice.
Cubic boxes = atoms.
The positive octant = crystal.

. Consider melted crystal configurations: Boxes are

removed. Melting starts at the corner.

. Melting rules can be formulated precisely.

. A crystal has energy equal to the number of boxes

removed.

. Partition function

q

confugurations

7 — E : number of boxes removed

y4




Crystal representations can be generalized to C?® with 3
non-compact D-branes (Okounkov-Reshetikhin-Vafa)

Asymptotic boundary conditions specified by Young
diagrams pu, v, and p. Need regularization.

This is precisely the toplogical vertex C. .



Toplogical vertex and gluing rules
= A-model amplitudes for any toric (non-compact)
Calabi-Yau 3-fold

Igbal, Nekrasov, Okounkov, and Vafa interpreted the
topological vertex computation as the quantum foam
formulation of the Kahler gravity (A-model topological
closed string). Crystal atoms represent toric blow-ups and

their generalizations.



CY crystals from CS theory'

hep-th/0409270

e Crystals represent violent fluctuations of topology and
geometry.

e A geometric transition is a change of topology and
geometry.

Question: Are they related?

-Indeed. It is possible to obtain new crystals from the open
string side.



The model for O(—1) @ O(—1) — P1: Crystal bounded by
an extra wall:

/[ /S L 7 L 7 L S

/ [ [ L 7 L L L L S

L [/
[ L L L L L L L L/

Melting rules same as before, except atoms cannot be
removed from y > N.

Will show:

e—nt

Zcrystal — M(Q)G_ Zn>0 n[n]? (: Zres.con.)-

([n] := q™/? —q~™/2,t := gyN)

Different from Igbal-Nekrasov-Okounkov-Vafa:

e—nt

1. They got Z = M(q)?%e 2o nn]?

2. In their model, the distance between the pair of corners
is not fixed. In ours, it is fixed.



Free fermions and two ways of slicing.

Closed string slicing

Open string slicing
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Computation via closed string slicing'

One can represent the crystal in terms of a 2D free CFT.

(.
¥(z) = Z /27 (2 Z Zr—|—1/2’

reZ+1/2

{¢ra 1;3} — 57’4—3,07

[ama an] — m5m+n,0-
e 1.1 <> ¢ via bosonization: i0¢ =: Y1) :

e Zero-charge fermionic Fock states are parameterized by
Young diagrams g = (p1 > po > ... > g > 0):

D
= H Ve (ui—it1/2) ¥V (ut—it1/2)|0)
i=1
(D: the number of boxes in the diagonal)

e The Virasoro zero-mode counts the number of boxes:
Lo|p) = |p||p)
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The local melting rule can be formulated via the relation:
Al & A D p, (A —first row) C p
(A and p are said to interlace)

m
For example, EJ > ﬁﬂ

Then

{Allowed configurations for C*}
= {o.o=<p® <p® <O D 5B

and

{Allowed configurations for O(—1) ® O(-1) — P'}
= {oo=<p® <p0 Y 5D e 5N = e}

Closed string slicing
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Let us define

+n

2
[1(z) = exp Z —— Q4p-
n>0 n

These are useful because

LA =) Iw), T-@Q)N) =) |w.

Al w=A

Then
Z(crystal for O(—1) ® O(-1) — P*)
_ 3 g Liez ]

allowed configurations

= (0] (H qL°F+(1)> g™ (H F—(l)qL°> 0)

O [T+ %) J] T-(g " /2)]0)

m=1

It is easy to evaluate this CFT correlator and find

e—nt
Z =M(q)e 2 om0 nn2 ¢ = g,N.

Closed string slicing computes closed string amplitudes.
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Open string slicing.

There is another way to implement the free field
representation:

In this picture,

{Allowed configurations for O(—1) @ O(-1) — P!}
= Lo =<p® < pO = D 5D (u9); < N}

Therefore,

Z(crystal for O(—-1) @ (9(— ) — P1)

_ O|HF n=1/2)1 u1<NHF g~ ™=1/2))|0)

m=1

We will now show that open string slicing arises from
Chern-Simons theory on S3.
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Unitary matrix model for CS theory on SBI

Z(Chern-Simons on S°)
= Soo(Level k U(N) current algebra)

~ Z e(w)q%(w(p)_p)z, p : Weyl vector
weW :Weyl group

By massaging it, we get

Z(CS) = |W|/< —1900 Wi q )(H 2 sin )

= / dU det ¥o9o(U;q), dU : Haar measure
U(N)

Here we have introduced one of Jacobi’s theta functions
doo(€5q) == ) q* S

Related to the matrix model of Marino via a modular

transformation of 9.
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Crystal from Chern-Simons theory'

Via the product formula for the theta function, we get

Z(CS)
o N
_ H(1 B qj) /dUexp Z TrU™ + TrU
j=1 n=1 n[n]

One can define states |U) such that

/dU|U>(U| = 14<n : Projects onto p with at most N rows

oo oo o_p

Z(CS) =~ (0]e2en=1 W11 4c yelin=1 7T |0)

16



Z(CS) = OIHF ") u1<NHF (g~ 2)0).

This free field correlator represents the open string slicing:
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Adding D-branes I

e Closed string slicing
= Explicit computations of the D-brane amplitude.

e Open string slicing
= Matrix model representation of (Un)knot invariants.
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From closed string slicing:

put=N;,—M+ii=1,.. M.

From open string slicing,

2

Z, / dU det Yoo (U; q)Tr, U
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Summary I

e Proposed new (fixed) crystal model for the resolved
conifold.

e Derived these crystals from the Chern-Simons theory on
S3.

e Found a unitary matrix model formulation of the
Chern-Simons theory on S3.

e Generalized the crystals to include non-compact
D-branes.

Different from INOV.

Open question: Generalize beyond the resolved conifold?
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