
Topological conformal field theories

from Calabi-Yau categories
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Segal’s definition of conformal field theory.

CategoryM, objects are finite sets, morphisms are

Riemann surfaces with parameterised boundary.
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Outgoing

Incoming

Σ ∈M(3, 2)

Boundary of Σ is split into incoming and outgoing.

Composition inM : gluing of surfaces.

Disjoint union makesM into a symmetric monoidal

category.
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A CFT is a tensor functor fromM to vector spaces.

If Φ is a CFT, for a finite set I, Φ(I) is a vector

space.

There are maps

Φ(I)⊗ Φ(J)→ Φ(I q J)

Usually these are assumed to be isomorphisms; this

case is called split.

Each Riemann surface Σ ∈M(I, J) give a map

Φ(Σ) : Φ(I)→ Φ(J)

Disjoint union corresponds to tensor product. The

diagram

Φ(I1)⊗ Φ(I2) //

Φ(α1)⊗Φ(α2)

��

Φ(I1 q I2)

Φ(α1qα2)

��

Φ(J1)⊗ Φ(J2) // Φ(J1 q J2)

commutes.

Φ respects composition.

Φ(Σ1 ◦ Σ2) = Φ(Σ1) ◦ Φ(Σ2)

if Σ2 ∈M(I, J), Σ1 ∈M(J,K).
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For example : in a topological field theory,

operations Φ(Σ) are independent of the conformal

structure on Σ.

A split topological field theory is the same as a

Frobenius algebra.

In TFT, we are taking locally constant functions on

moduli space, which is a sheaf with higher

cohomology.

Topological conformal field theory is the derived

analogue of this.

In TCFT, Φ(I) are complexes. Each surface

Σ ∈M(I, J) gives a map of complexes

Φ(Σ) : Φ(I)→ Φ(J)

If Σ1,Σ2 are connected by a path α in moduli

space, then operations Φ(Σ1),Φ(Σ2) are connected

by a chain homotopy, Φ(α).

Φ(α) is a chain homotopy means

[d,Φ(α)] = Φ(dα) = Φ(Σ1)− Φ(Σ0)
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Similarly, any n parameter family of surfaces α, i.e.

singular n simplex, gives an operation Φ(α) with

Φ(dα) = [d,Φ(α)]

Define a category
�

, with the same objects asM,

but whose morphisms are the singular chain

complexes

�
(I, J) = C∗(M(I, J))

�
is a differential graded symmetric monoidal

category, monoidal structure given by disjoint

union.

Then a TCFT is a tensor functor from
�

to

complexes, compatible with the differential.

Each I ∈ Ob
�

, a finite set, have a complex Φ(I).

Maps Φ(I)⊗ Φ(J)→ Φ(I q J); extra technical

condition, these are quasi-isomorphisms.

Each α ∈
�

(I, J) gives map Φ(I)→ Φ(J). The

maps are compatible with composition, differential,

and monoidal structure.
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Technical points:

• Category of TCFTs is independent of chain

model for moduli space.

• We should take chains with coefficients in the

flat line bundle

(det(H∗(Σ))[χ(Σ)])⊗d

on moduli space. Σ is the universal surface. d is

the dimension of the theory.

Dimension will correspond to complex dimension of

Calabi-Yau in A or B model.

d = 3 is critical dimension :

(det(H∗(Σ))[χ(Σ)])⊗d

is the dualizing complex onMg.
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Let � Λ = C∗(M
open
Λ ).

An open TCFT is a tensor functor from � Λ to

complexes. For open TCFT of dimension d we use

chains with coefficients in the local system

det(H∗(Σ))[χ(Σ)]⊗d.

Each pair λ1, λ2 of D-branes defines an object of

� Λ. If Φ is an open TCFT, Φ(λ1, λ2) is a complex;

morphisms between D-branes.

If O is a set, and s, t : O → Λ are maps, then Φ(O)

is a complex. There is a map

Φ(O1)⊗ Φ(O2)→ Φ(O1 qO2); we assume this is a

quasi-isomorphism.

If α ∈ � Λ(O1, O2) is a chain in moduli space of

Riemann surfaces, with O1 incoming, O2 outgoing,

open boundaries, D-brane labels s, t : Oi → Λ, we

have a map

Φ(α) : Φ(O1)→ Φ(O2)

with various compatibility conditions.
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Main result: allows algebraic construction of open

and closed TCFTs.

Theorem 1. 1. There is a homotopy equivalence

of categories between open TCFTs of dimension

d, and extended Calabi-Yau A∞ categories of

dimension d.

2. For each open TCFT, there is a homotopy

universal open-closed TCFT.

3. The homology of the closed states of this is the

Hochschild homology of the A-infinity category.

Calabi-Yau category is a linear category with an

invariant pairing between Hom(A,B) and

Hom(B,A). Categorical generalisation of Frobenius

algebra. A∞: only associative up to homotopy.

Part 1 means there are functors

F : Open TCFTs � CY categories : G

F ◦G, G ◦ F quasi-isomorphic to identity functors.
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Example : X a projective Calabi-Yau, then Db(X),

derived category of coherent sheaves, is a

Calabi-Yau category, with

Hom(A,B) = ⊕i Exti(A,B)

Serre pairing

Exti(A,B) ∼= Extd−i(B,A)∨

Then we should have

HHk(D
b(X))

?
= ⊕j−i=kH

i(X,Ωj)

TCFT structure induces operations

H∗(M(I, J))→ Hom(HH∗(D
b(X))⊗I ,HH∗(D

b(X))⊗J )

B model mirror to operations

H∗(M(I, J))→ Hom(H∗(X
∨)⊗I ,H∗(X

∨)⊗J)

arising geometrically (Gromov-Witten type

invariants).
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Functors

j : � Λ → �
�

Λ ←
�

: i

If Φ : � Λ → Complexes is an open TCFT, there is a

universal extension j∗Φ : �
�

Λ → Complexes.

Lj∗Φ : homotopy universal extension (replace Φ by

resolution, apply j∗).

Any functor Ψ : �
�

Λ → Complexes pulls back to

i∗Ψ :
�
→ Complexes.

Set �
(Φ) = i∗Lj∗Φ�

is a functor from open to closed TCFTs. Main

result says that

H∗(

�
(Φ)(I)) = HH∗(Φ)⊗I

A category is like an algebra, a functor to

complexes is like a left module. Then

j∗Φ = �
�

Λ ⊗ �
Λ

Φ

Lj∗Φ = �
�

Λ ⊗
L�

Λ
Φ
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Think of �
�

Λ as a
�
− � Λ bimodule. So that if Φ

is an � module – i.e. open TCFT – then

�
�

Λ ⊗ �
Λ

Φ is a
�

module.

Picture of tensor product:
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Free boundaries labelled by D-branes, f, . . . , j

morphisms between them.
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Geometric examples of TCFT (largely conjectural):

If X is compact, symplectic, Fukaya category is

open (tree level) TCFT.

D branes : graded Lagrangians in L ⊂ X;

Homi(L1, L2) = CF−i(L1, L2)

the Floer complex.

Homology H∗+d(X) of X is a closed homological

CFT of dimension d. Operations

H∗(M(I, J))→ Hom(H∗+d(X)⊗I ,H∗+d(X)⊗J)

from GW theory.

Conjecture 1. This lifts to chain level, so

C∗+d(X) is a closed TCFT of dimension d.

Conjecture 2. There is open-closed TCFT

structure on (Fuk(X), C∗+d(X)), generalising the

open structure on Fuk(X) and closed structure on

C∗+d(X).
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This structure should come from open-closed GW

theory.
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Σ

Open boundaries

Lagrangians

Floer chains of loop space

Open boundaries are shrunk to points. Free

boundaries map to Lagrangians, and closed

boundaries to critical points of loop space Floer

functional, which are periodic orbits of a generic

time-dependent Hamiltonian.

Compactify by bubbling. Note CF∗(X) ' C∗(X),

so gives TCFT structure on either Floer or ordinary

chains.
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If X is compact, symplectic, Fuk(X) is a unital

Calabi-Yau A∞ category, and so an open TCFT.

Universal closed TCFT

�
(Fuk(X)),

H∗(

�
(Fuk(X))) = HH∗(Fuk(X))

If (Fuk(X), C∗+d(X)) is an open-closed TCFT, then

there is a map�
(Fuk(X))→ C∗+d(X)

of closed TCFTs : intertwines operations from
�

= C∗(M).

This induces a map

HH∗(Fuk(X))→ H∗+d(X)

For all α ∈ H∗(M(I, J)) diagram

HH∗(Fuk(X))⊗I //

α

��

H∗+d(X)⊗I

α

��

HH∗(Fuk(X))⊗J // H∗+d(X)⊗J

commutes.
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In particular : dualise

H∗(X)→ HH∗(Fuk(X))

takes quantum product to Hochschild cup product.

Conjecture 3. The map

HH∗(Fuk(X))→ H∗+d(X) is an isomorphism, for

reasonable X.

This seems to be an integral part of the homological

mirror symmetry picture.

Equivalently, the formal neighbourhood of Fuk(X)

in moduli of A∞ categories is the same as the

formal neighbourhood of symplectic class in H∗(X).

If this was true, and X∨ is mirror to X, we would

see that ⊕H i(X∨,Ωj) is isomorphic to H∗(X) in a

way compatible with operations from H∗(M).
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Proof of main theorem : existence of universal

open-closed TCFT. Let Φ be an open TCFT. Then

define open-closed TCFT by

�
�

Λ ⊗ �
Λ

Φ

For b ∈ Ob �
�

Λ, ( �
�

Λ ⊗ �
Λ

Φ)(b) is spanned by

�
�

Λ(a, b)⊗ Φ(a)

where a ∈ Ob � Λ. Quotient by the relation that the

diagram

�
�

Λ(a, b)⊗ � Λ(a′, a)⊗ Φ(a′) //

��

�
�

Λ(a, b)⊗ Φ(a)

��

�
�

Λ(a′, b)⊗ Φ(a′) // ( �
�

Λ ⊗ �
Λ

Φ)(b)

commutes.

Homotopy universal TCFT : left derived version of

this. Replace Φ by a flat resolution.
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To compute the homotopy universal TCFT, we only

need to know about �
�

Λ(a, b) where only b has a

closed part – i.e. the only closed boundaries on the

surfaces are outgoing, and use only open gluing.

Give combinatorial model for this.

Use moduli of Riemann surfaces where open

boundaries are contracted to points.

Open gluing forces us to allow nodes on the

boundary. This is homotopy equivalent to usual

moduli spaces.

For example :
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Open
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Theorem 2. Locus where irreducible components of

surface are either discs, or annuli, one of whose

boundary components is closed and outgoing, is

homotopy equivalent to the whole moduli space.

(This implies a stronger version of ribbon graph

decomposition).

A surface in this moduli space :

PSfrag replacements

Σ

Open marked points, and closed outgoing boundary,

interior of annulus : marked point there is start of

parameterisation.

Proof of theorem : push open boundary components

inwards, eventually becomes singular; normalise,

repeat.
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Pass to chain level : using open gluing, these moduli

spaces are freely generated by discs and annuli.

Chain of a disc with n + 1 moving points, n

incoming one outgoing, free boundaries labelled by

D-branes A0, . . . , An,PSfrag replacements

Σ

A0

A1

An

An−1

. . .

Gives map

Hom(A0, A1)⊗. . .Hom(An−1, An)→ Hom(A0, An)

which is the A∞ operation mn.

The formulaPSfrag replacements

Σ
d =

∑
±

corresponds to A∞ axiom for operations mn.
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Annuli give Hochschild complex. Annulus with

n + 1 open marked points, free boundaries labelled

by D-branes A0, . . . , An,PSfrag replacements

Σ

A0

A1

An

An−1

. . .

gives map

Hom(A0, A1)⊗Hom(A1, A2)⊗. . .Hom(An, A0)→
�

D(1)

If fi : Ai → Ai+1mod n+1, get Hochschild chains

f0 ⊗ . . .⊗ fn+1 ∈
�

D(1)
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d = ±
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22 33

44

This corresponds to

d(f1 ⊗ f2 ⊗ f3 ⊗ f4) = f1 ⊗ f2 ⊗m2(f3 ⊗ f4)± . . .
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