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Introduction

à Critical supergravity/gauge duality enables us to determine qualitatively as well as quantitatively sev-

eral important phenomena of guage dynamics like Wilson lines, ’t Hooft lines, Polyakov lines, glueball

spectrum, external baryons, domain walls etc.

à However, the anitholographic descriptions of gauge theories suffers from a severe limitation which is

the fact that generically their spectrum includes KK states with the same mass scale as that of the

hadronic states.

à To date there is no mechanism to disentangle the KK states from the hadrons.

à The most naive way to overcome this problem is to study the holographic duality in non-critical string

theory of dimension four or close to four.

à Are there such consistent string theories?

à The simplest non-critical string theory is the Linear dilaton string where

Xµ, µ = 1, ..., d < 10 φ = VµX
µ VµV

µ =
26 − d

6

à There is no no-go theorem that states that superstring theories can not exist in the window of 3/2 <

d < 10. Kutasov and Seiberg showed that the superLiouville theory in even dimension is consistent

( tachyon free).
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à The study of gauge/gravity duality of non conformal gauge theory taught us that the renormalization

scale is naturally identified with a fifth dimension.

à Therefore for ( non-supersymmetric) gauge theories we look for a curved background metric with a

warp factor

ds2 = e2λ(τ)dIIx
2 + dτ 2

à R symmetries of supersymmetric gauge theories are expected to be the duals of the isometries of

the transverse space. To accommodate the SO(6) R symmetry of N = 4 SYM we need the S5 of

the AdS5 × S5. Theories with U(1)R call for S1 transverse dimension etc. for instance for N = 1

SYM our ansaz metric will be

ds2 = e2λ(τ)dIIx
2 + dτ 2 + e2ν(τ)dΩ2

s1

à A basic ingredient in the gauge/gravity duality are the RR forms. We do not know how to quantize

critical NSR string theories on such backgrounds, let alone non-critical ones.

Tel Aviv Univeristy Page 3



Gauge/gravity Cobi Sonnenschein

à Hence our strategy is to first address the non-critical holography in the SUGRA limit.

à The starting point are the equations of the vanishing β functions. These determine the low energy

SUGRA effective action.

à The non critical SUGRA solutions are characterized by finite curvature ( in units of α′) and hence

one cannot a priori ignore higher order curvature corrections.

à However, there are non critical string theories with high curvature that are exactly solvable.
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Outline

à The non-critical SUGRA equations of motion and BPS equations

à Families of solutions:

• The linear dilaton; The Cigar and Trumpet as T-duals

• The non critical AdS3 × S3 string theory.

• Conformal AdSn+1 × Sk backgrounds

• AdS black hole solutions

• The RR deformed two dimensional black hole

• Backgrounds with non-zero RR charge Q 6= 0 that asymptote to the linear dilaton solution

à Holographic dual gauge theories: The entropy; A novel large N limit; The gauge theories duals of

the AdSp+2 × Sd−p−2 SUGRA backgrounds and Ads BH backgrounds;

à The phenomenology of the AdS6 black hole : Wilson line, ’t Hooft line, glueball spectra, spinning

strings, flavored quarks

à SUGRA backgrounds duals of flavored gauge theories.

à Anomalies

à Toward the exact non critical string theory with RR background.
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The non-critical SUGRA equations of motion

à The bosonic part of the non-critical SUGRA action in d dimensions that follows from the vanishing β

functions is

S =
∫

dn+k+1x
√

Ge−2φ
(

R + 4(∂φ)2 +
c

α′

)

−e−2φ

2

∫

H(3) ∧ ?H(3) −
∑

p

1

2

∫

F(p+2) ∧ ?F(p+2),

where
c

α′ =
10 − d

α′

is the non-criticality term

The background includes

à The metric in the string frame is taken to depend only on the radial coordinate τ .

l−2
s ds2 = dτ 2 + e2λ(τ)dx2

‖ + e2ν(τ)dΩ2
k

where dx2
‖ is n dimensional flat metric, and dΩ2

k is a k dimensional sphere.
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à The Fp+2 RR form that corresponds to a Dp brane with n = p+1 dimensional world volume. Only

a single Fp+2 form will be considered

à Upon substituting the metric into the action and performing the integration one finds

S = l−2
s

∫

dρ
([

−n(λ′)2 − k(ν ′)2 + (ϕ′)2 + ce−2ϕ + (k − 1)ke−2ν−2ϕ
])

+ SRR

where dτ = −e−ϕdρ, (A)′ = ∂ρA and

ϕ = 2φ − nλ − kν

is the “shifted” dilaton.

à Assuming that the RR form also depends only on the radial direction , namely, F = ∂τAdx0 ∧
...dxp ∧ dτ , the RR part of the action reads

SRR = −
∫

dρ
(

1

4
e−nλ+kν+ϕ(A′)2

)

= −Q2
∫

dρenλ−kν−ϕ,

where we made the substitution

A′ = 2Qenλ−kν−ϕ

which is the solution of the equation of motion of

A′′ − A′(nλ′ − kν ′ − ϕ′) = 0
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à The second order equations of motion are:

∂2
ρλ − 1

2
Q2

RRenλ−kν−ϕ = 0,

∂2
ρν − (k − 1)e−2ν−2ϕ +

1

2
Q2

RRenλ−kν−ϕ + Q2
NSe−2kν−2ϕ = 0,

∂2
ρϕ + (c + (k − 1)ke−2ν)e−2ϕ − 1

2
Q2

RRenλ−kν−ϕ − Q2
NSe−2kν−2ϕ = 0

à Any solution has to obey the zero-energy constraint ,

n(∂τλ)2 + k(∂τν)2 − (∂τϕ)2 + c + (k − 1)ke−2ν − Q2
RRenλ−kν+ϕ − Q2

NSe−2kν = 0
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The superpotential and BPS equations

à For certain backgrounds one can avoid the hurdle of solving second order differential equations and

instead solve first order BPS equations.

à Consider the following general form of a background action

S =
∫

dρ
(

−1

2
Gabf

a′f b′ − V (f)
)

If the potential is related to a superpotential W as follows

V =
1

8
Gab∂aW∂bW,

then the BPS equations are

fa′ =
1

2
Gab∂bW.

à The BPS equations are compatible with the equations of motion and with the zero energy condition.

à Applying this procedure to our case we get

Gλλ = 2n Gνν = 2k Gϕϕ = −2

and

V = Q2enλ−kν−ϕ − (c + (k − 1)ke−2ν)e−2ϕ.
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and therefore the relation between the potential and the superpotential reads

1

n
(∂λW )2 +

1

k
(∂νW )2 − (∂ϕW )2 = 16V

and the BPS equations are

λ′ =
1

4n
∂λW, ν ′ =

1

4k
∂νW, ϕ′ = −1

4
∂ϕW.
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Families of non critical backgrounds

à The linear dilaton; The cylinder; Cigar and Trumpet as T-duals

à Conformal AdSn+1 × Sk backgrounds

à AdS black hole solutions

à The RR deformed two dimensional black hole

à Backgrounds with non-zero RR charge Q 6= 0 that asymptote to the linear dilaton solution
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The linear dilaton; The Cigar and Trumpet as T-duals

à The linear dilaton solution with no Sk reads

ds2 = −dt2 + . . . + dx2
n−1 + dτ 2

and a linear dilaton

eϕ = ±√
cρ → ϕ = ±√

cτ → φ = ±
√

c

2
τ.

à Note that in 10d the dilaton becomes constant and the 10d flat space-time is retrieved.

à In fact the background with the linear dilaton corresponds to an exact 2d conformal theory on the

world-sheet.

à A similar solution with S1 in the background is the cylinder background

ds2 = −dt2 + . . . + dx2
n−1 + dτ 2 + dθ2
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à A more interesting background is the cigar background

ds2 = −dt2 + . . . + dx2
n−1 + dτ 2 + tanh2

(

1

2

√
cτ
)

dθ2

with a dilaton of the form

e2φ =
1

2a

1

cosh2
(

1
2

√
cτ
) .

à The radius of the compact direction is equal to

Rθ =
2√
c

It is fixed by requiring the space to be regular at τ = 0.

à The scalar curvature of this “cigar” background is

l2sR = − c

cosh2
(

1
2

√
cτ
) .

à The cigar background like the cylinder one corresponds to an exact string solution .
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à We have discussed solutions characterized by a compact S1 transverse space. This naturally calls

for the implementation of T-duality to generate new solutions of the equations of motion.

à In the present context T-duality acts on eν and on eφ as follows

e2ν → e−2ν e2φ → e2φ−2ν

where we still use α′ = 1.

à Applying T duality to the cigar solution one finds a trumpet solution of the form

eν = coth
(

1

2

√
cτ
)

e2φ =
1

2a

1

sinh2
(

1
2

√
cτ
)
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The AdS3 × S3

à An important class of non critical strings are the strings on group manifolds

à As an example consider the superstring on the group manilfods SU(2)k × SLk̃(2). In the corre-

sponding SUGRA one turns on two NS three forms along the three dimensions associated with e2λ

dx2
II and the S3.

à The NS terms in the action read

SNS = Q2
∫

dρe−6ν−2ϕ SÑS = Q̃2
∫

dρe4λ

à The solution of the equations of motion for this case reads

R2
S =

Q√
2

1

R2
AdS

− 1

R2
S

=
c

4
= 1

à This is exactly the result that follows from the string calculation since

3(k̃ − 2)

k̃
− 3(k − 2)

k
+ 3 = 15 → 1

k̃
− 1

k
= 1
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Conformal AdSn+1 × Sk backgrounds

à The analog of the critical AdS5 × S5 background are the family of “conformal non-critical back-

grounds that incorporate RR forms. and a constant dilaton.

à A brief glance over the equations of motion tells us that requiring a constant dilaton implies also a

constant ν

∂ρφ = 0 → ∂ρν = 0

and the solution of this condition takes the form

e2φ0 =
1

n + 1 − k

(

(n + 1 − k)(k − 1)

c

)k
2c

Q2

e2ν0 =
(n + 1 − k)(k − 1)

c
. (1)

à In order not to have vanishing warp factor of the world-volume coordinates, we must require

n + 1 − k 6= 0 k 6= 1.

à It is convenient at this stage to switch from ρ to τ dependence. Recalling that ϕ = 2φ − nλ − kν

we find that the equation for λ is
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∂2
τ λ + n(∂τλ)2 =

Q2

2
e2φ0−2kν0.

This is solved by

λ =

(

c

n(n + 1 − k)

)1/2

τ + λ0.

à Defining RAdSu = eτR−1

AdS we end up with the following metric:

l−2
2 ds2 = ds2

AdSn+1
+ ds2

Sk =
(

u

RAdS

)2

dx2
‖ +

(

RAdS

u

)2

du2 + R2
SkdΩ2

k,

where

RAdS =

(

n(n + 1 − k)

c

)1/2

and RSk =

(

(n + 1 − k)(k − 1)

c

)1/2

.
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AdS black hole solutions

à In is well known that in addition to the extremal SUGRA backgrounds, one can also construct near

extremal solutions which correspond to boundary field theories at finite temperature. For D3 brane

in the near horizon limit the near extremal solution is the AdS black hole solution.

à Since we have identified a family of AdSn+1 × Sk backgrounds it is natural to anticipate that there

are also non-critical AdS black hole solutions.

à Indeed it is straightforward to derive these solutions

l−2
s ds2 =

(

u

RAdS

)2 [

−
(

1 −
(

u0

u

)n)

dt2 + dx2
i

]

+
(

RAdS

u

)2 du2

(

1 −
(

u0

u

)n) + R2
SkdΩ2

k,

where the energy density on the brane is given by un
0 = 2aRn

ADS .

à Note that the thermal factor here is different from the one of near extremal Dp branes apart from the

case p = 3 where they coincide.
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The RR deformed two dimensional black hole

à In 2d with no transverse sk the potential reads

V = Q2enλ−ϕ − ce−2ϕ.

à The superpotential equation

w′(φ)w(φ) − w(φ)2 = Q2e2φ − c.

where W = 4e−ϕw(φ)

This equation has an analytic solution Berkovitz, Gukov, vallilo

w(φ) =
√

2φQ2e2φ − 4me2φ + c,

where m is an integration constant.

à The background metric takes the form

l−2
s ds2 = −1

4
w2(φ)dt2 +

dφ2

1
4
w2(φ)

,

à It was shown that this solution can be interpreted as a two dimensional black hole with an ADM mass

MADM = 2√
c
m. The scalar curvature was found to be α′R = e2φ[Q2(φ + 1) − m].
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à In the near horizon limit, around φ0 where w(φ0) = 0 with u = φ − φ0 the space-time turns into

an AdS2 one

l−2
s ds2 = −

(

u

RAdS

)2

dt2 +
(

RAdS

u

)2

du2,

where RAdS =
√

2
c

and the scalar curvature is α′RAdS = c.
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Backgrounds with non-zero RR charge Q 6= 0 that asymptote to the linear dilaton solution

à Upon turning on a RR flux in the cylindrical geometries the superpotential equaion does not admit an

anlytic solution, only a numerical one.

à The typical form of the functions eλ and eν is .

Figure 1: The picture represents the typical form of gii = e2λ and gθθ = e2ν . For τ → −∞ we

approach the cylinder geometry, while at τ → 0 the background becomes singular.

à Since eλ has a global minimum where it does not vanish it is a confining background.
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à Our original goal in this section was to construct the RR perturbation of the cigar geometry. As it

evident, however, from all the solutions the RR form changes dramatically the metric.
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Holographic dual gauge theories

à We conjecture here that the concept of holographic duality holds also for non-critical SUGRA back-

grounds

à In critical dimensions a useful way to understand the Dp brane SUGRA backgrounds is via the back-

reaction of a stack of N Dp branes on a background of flat space-time and a constant dilaton .

à In non-critical backgrounds one starts with a flat d dimensional Minkowski space-time with a linear

dilaton The back-reaction of adding N Dp branes generates the AdSp+2 × Sd−p−2 backgrounds

with p + 2 RR forms which again have N units of flux. However, unlike the critical cases, here the

dilaton is constant for any p.

à The non-critical solutions we have found with an S1 factor can also be thought of as the back-

reaction of N Dp branes placed in manifolds ofR1,p+1 × S1 geometry. Recall that this background

is equivalent to the N = 2 super Liuville theory.
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The entropy and the duality to gauge degrees of freedom

à If the boundary field theory is a gauge theory the SUGRA entropy should match that of a gauge

theory.

à The entropy of the boundary field theory scales like

Sgauge ∼ N2

δ3
,

where δ is a UV cutoff.

à A way to evaluate it is to compute the area in units of GN in the Einstein frame. The area of the

boundary diverges and similarly to the field theory calculation a cutoff δ has to be introduced. The

area takes the form

SSUGRA ∼ Area ∼ VSk

(

RAdS

δ

)n−1

∼ (RSk)k
(

RAdS

δ

)n−1

∼ N
2

d−2
(k+n−1)δ−(n−1) ∼ N2δ−(n−1),

à In particular in four dimensions with n = 4 we find an agreement with Sgauge.

à It turns out that the same result applies also to the non conformal solutions.
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A novel large N limit

à The radii of the AdSn+1 and of the Sk are Q (and hence N ) independent constants of order unity

and the curvature is

α′R = −c.

à Hence unlike the critical AdS/CFT duality, here the curvature is fixed, of order unity and cannot be

reduced by taking a large N limit.

à This is of course a problem of the whole analysis since high order curvature corrections can modify

the general picture.

à Unlike the critical case, in the non-critical case the string coupling is N dependent

gs ∼ eφ0 =





1

n + 1 − k

(

(n + 1 − k)(k − 1)

c

)k
2c

Q2





1/2

and hence

gs → 0 N → ∞

and therefore small string coupling means large N .

à Moreover, if we adopt the conventional correspondence between gs and g2
Y M then since gs ∼ 1

N
,
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we find that the ’t Hooft coupling is a constant of order unity

λ′tHooft = g2
Y MN ∼





2c

n + 1 − k

(

(n + 1 − k)(k − 1)

c

)k




1/2

.

To summarize, the large N limit that one has to take in the boundary gauge theory dual to the

non-critical SUGRA is different than the one taken in the critical case:

critical : N → ∞, g2
Y MN � 1

non-critical : N → ∞, g2
Y MN ∼ 1.
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The gauge duals of the AdSp+2 × Sd−p−2 backgrounds

à The SUGRA models and their corresponding global symmetries ( for even d) are given in the following

table.

[b]

Gauge theory The SUGRA The global

in n dimensions manifold symmetry

2 AdS3 × S5 SO(6)

3 AdS4 -

3 AdS4 × S2 SO(3)

4 AdS5 × S3 SO(4)

5 AdS6 -

5 AdS6 × S2 SO(3)

7 AdS8 -

à We have not chekced how many supersymmetries each model has, if at all, however, if a model

do admit supersymmetry, the isometry of the background should correspond to the gauge theory R

symmetry.
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à From a brief glance on the table it seems that the two models with SO(3) isometry may correspond

to superconformal gauge theories. It is known that in three dimensions a theory with N supersym-

metries has an R symmetry of SO(N). Hence the AdS4 ×S2 model may correspond to N = 3 in

three dimensions. There is a five dimensional superconformal theory with SP (1) R symmetry. This

may relate to the AdS6 × S2 model].

à For the rest of the models we cannot relate the data given in the table with known superconformal

gauge theories. There are several logical explanations to this situation:

(i) It might be that the dual gauge theories are non-supersymmetric theories. For instance, one

could imagine four dimensional theories with four additional matter fields in the adjoint that admit the

SO(4) global symmetry and strongly coupled fixed points.

(ii) It might be that only part of the full isometry translates into an R symmetry of the gauge theory

due to the fact, that the GSO projection is compatible only with a subgroup of the full isometry group.

Such a case occurs for the AdS3 × S3.

à Assuming that there are conformal gauge theories that correspond to these non-critical SUGRA

backgrounds, one can turn on the known machinery of computing the conformal dimensions of

chiral operators computing correlation functions etc. in a similar manner to what was done in the

critical cases.
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The AdS6 black hole and non-supersymmetric YM theory

à The AdS radius of the non-critical case and the critical one are

critical : RAdS =
(

gY M

√
N
)1/2

non-critical : RAdS =

(

n(n + 1 − k)

c

)1/2

.

à Due to the similarity between the critical and non-critical near extremal solutions , we do not have to

redo the calculations that correspond to the properties of the gauge theory but rather read them from

the known results of the critical theory.

à In particular, we can implement the idea of imposing anti-periodic boundary conditions while taking

the large temperature limit, which leads to a pure YM theory in space-time with one les dimensions.

à Thus the non-critical AdS6 black hole background ( with no Sk corresponds to pure YM in four

dimensions
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The Wilson line

à To determine the Wilson loop one can write down the NG action associated with the background

metric and determine the classical configuration of the string . Instead we can check whether one of

the two conditions for an area law Wilson law is obeyed

g00gii(u) has a minimum at umin with g00gii(umin) > 0,

g00guu(τ) diverges at τdiv with g00gii(τdiv) > 0.

à It is easy to check that after the reduction to 3d

g00guu = [1 − (
uT

u
)4]−1

which diverges at u = uT . The conclusion is therefore that indeed the Wilson loop in this background

admits an area law behavior

à The string tensions of the non critical versus critical case are

critical :
1

2
π
√

g2
Y MNT 2

non-critical :
1

2π

(

u0

RAdS

)2

=
1

2
π

8

c
T 2
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à One can show that the analogous calculation of the ’t Hooft loop which measures the potential be-

tween a monopole anti-monopole pair admits a screening behavior. This is done in the SUGRA by

calculating the configuration of a D2 brane that ends on the boundary and wraps the thermal cycle,

and realizing that its energy is larger than the sum of the energy of a monopole and anti-monopole.
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The glue-ball spectra

à Next we consider the glue-ball spectrum. The analysis of the four dimensional glue-balls extracted

from the non-critical AdS6 bh model is similar to the one done in the near extremal limit of the D4

critical background.

à The spectrum of the 0++ glueball associates with the fluctuation of the dilaton φ = φcl + δφ

à Unlike the critical case where the ∇2φ = 0 here due to the coupling to the RR we get

∇2δφ = 4δφ

so taht for δφ = b(u)eikx we get

∂2
ub(u) +

6 −
(

R
u

)2

u(1 −
(

R
u

)2
)
∂ub(u) +









M2

(

R
u

)4

1 −
(

u0

u

)5 − 30

u2

(

1 −
(

u0

u

)5
)









b(u) = 0

à This can be translated to a Schroedinger equation with a potential of the following form

Tel Aviv Univeristy Page 32



Gauge/gravity Cobi Sonnenschein

–10

0

10

20

30

–8 –6 –4 –2 2 4 6 8

Figure 2: The effective potential (??) for n = 5 and
MRAdS

u0
= 20 The plot demonstrates that there are

two classical turning point at y = y+ and at y = −∞.
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[b]

The effective potential (??) for n = 5 and
MRAdS

u0
= 20 The plot demonstrates that there are

two classical turning point at y = y+ and at y = −∞.

à Using techniques developed in the critical case Minaham we finally get the spectrum of the spin

0 glueballs

M2
0,φ ≈ 39.66

β2
k(k + 6.02) + O(k0).

à In a similar manner one computes the glueballs spectrum associated with the RR one forms

à The spectrum of excitations for both types of glueballs is compared to those extracted from the

critical case

k M0++ M0+− M0,AM
M0,φ

1 9.85 11.8 9.96 16.7

2 15.6 17.8 16.7 25.2

3 21.2 23.5 23.1 32.8

4 26.7 29.1 29.5 39.9

5 32.2 34.6 35.9 46.7

6 37.7 40.1 42.2 53.5
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Figure 3: glueball spectra
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Flavored SUGRA backgrounds

à Klebanov and Maldacena proposed to add Nf space filling branes anti-branes to introduce the flavor

degrees of freedom of the dual gauge theories.

à There are several questions about this proposal in particular whether it can be supersymmetric or

even stable. Here we will assume that it is consistent to add such a term

à The SUGRA action now reads

S =
∫

dn+k+1x
√

Ge−2φ
(

R + 4(∂φ)2 +
c

α′−2Nfe
φ
)

−e−2φ

2

∫

H(3) ∧ ?H(3) −
∑

p

1

2

∫

F(p+2) ∧ ?F(p+2),

à The corresponding equations of motion are

∂2
ρλ − 1

2
Q2

RRenλ−kν−ϕ − 1

2
Nfe

1/2(−3ϕ+nλ+kν) = 0,

∂2
ρν − (k − 1)e−2ν−2ϕ +

1

2
Q2

RRenλ−kν−ϕ + Q2
NSe−2kν−2ϕ = −1

2
Nfe

1/2(−3ϕ+nλ+kν)0,
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∂2
ρϕ + (c + (k − 1)ke−2ν)e−2ϕ − 1

2
Q2

RRenλ−kν−ϕ − Q2
NSe−2kν−2ϕ − 3

2
Nfe

1/2(−3ϕ+nλ+kν) = 0.

à It is easy to check that these equations admit AdSn+1 × Sk solutions namely with constant dilaton

and radii.

à The parameters of the solution, the string coupling gs, the Ads radious RAdS and the radius of the

Sk are determined from the following algebraic relations.

k − 1

R2
S

− 1

2

(gsN)2

R2k
S

+
1

2
Nfgs = 0

n

R2
AdS

− k − 1

R2
S

= gsNf

n(n + 1)

R2
AdS

− k(k − 1)

R2
S

= c − gsNf

à Note that now, unlike the unflavored case, there is no restriction of the form k 6= 1 and k 6= n + 1.

In fact the cases with k = 1 are easily determined to be

gs =
c

n + 2

1

Nf

R2
Ads =

n(n + 2)

c
R2

S =
c

n + 2

N2

N2
f
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à In particular for k = 1, n = 4, c = 4 we get the Klebanov Maldacena solution.

gs =
2

3

1

Nf

R2
AdS = 6 R2

S =
2

3

N2

N2
f

à For the symmetric cases AdSd/2 × Sd/2, namely k = n + 1, we get

gs =
c

n + 2

1

Nf

=
2c

c + 2

1

Nf

The relation between the radii is

1

R2
AdS

− 1

R2
S

=
c

n(n + 2)

Note that for c = 0 we are back in the AdS5 × S5 background.
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The a anomaly function from SUGRA

à Supersymetric gauge theories have an analog of the 2d c-theorem the a theorem that states that

a ≡ 2

32
[3Tr(R3) − Tr(R)]

is decreasing upon flowing from an UV to an IR fixed point.

à The UR(1) anomaly is related in susy theories to the confomal anomaly via

〈T i
i 〉 =

1

16π2
(cC2 − a E4)

à Skenderis and Henningson taught us how to compute the conformal anomaly from the conformal

variation of the bounday action.

〈T i
i 〉 =

1

16πG
(n+1)
N

R3
AdS

8
(C2 − E4)

and hence

a = c =
π

8

Vol(Sk)

γ g2
s lD−2

s

R3
AdS · Rk

s ∼ R3
AdSR5

s

g2
s
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à The generaliztion to AdSn+1 × Sk is

a ∼ Rn−1
AdS

G
(n+1)
N

=
Rn−1

AdSRk
s

G
(d)
N

=
Rn−1

AdSRk
s

g2
s

à For the un-flavored AdSp × Sk backgrounds the anomaly function a is

a = (
c

n + 1 − k
)(n−k−1)/2 n(n−1)/2

(k − 1)k/2
N2

Note that the result is proportional to N 2 for any s unlike the critical case where for instance in d = 6

a ∼ N3

à Upon substituting the relations between the radii for the flavored cases we get

a =
Rn−1

AdSN

gs

[

2(k − 1)

R2
S

+ gsNf

]− 1

2

à For all cases where the transverse part is an S1 we get

a = NNf (
n + 2

c
)

n+2

2 n
n−1

2
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à In particular for the KM model which is claimed to be dual to N = 1 SQCD we get

a ∼ 33NNf

à The a function ofN = 1 SQCD at the IR fixed point is

aSQCD = 4N2(1 − 3/2
N2

N2
f

)

which seems quite different from the SUGRA result. However, for the relevant region where 3N ≥
Nf ≥ 3/2N the two results are of the same order in N .
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à An other interesting case is theAdS3 × S3 background with RR flux. For
Nf

N
>> 1

16
the radius is

R2
S =

8

16
Nf

N
+ 1

and then the expression for a is

a ∼ NNf
1

√

(2
Nf

N
+ 5

8
)(2

Nf

N
+ 3

8
)

This model has an isometry of SU(2) × SU(2) and hence may correspond to a 2d (4,4) SYM

theory with Nf flavors which has an R symmetry of SU(2) × SU(2). For this model the anomaly

was found to be a = 6NNf so we see again that in the region where N
Nf

∼ 1 we get a similar

behavior behavior.
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Toward the non critical string with RR background

à There are exact models with “large curvature” where we know that theleading SUGRA result is not

corrected . For instance the leading SUGRA relation between the radii of AdS3 × S3 is

1

R2
AdS

− 1

R2
S

= 1

This is exactly the result of the string theory. The same is for the cigar solution.

à Our conjecture is that the structure of the AdSp ×Sk backgrounds is not change apart from poten-

tially the radii.

à A suport to this conjecture come from the AdS2 case. The most general higher curvature correction

can be written as
∑

n=2 cnRn. In that case the exact string constant and radius are given by

e2φ0 =
8

Q2

[

1 −
∑

n=2

(n − 1)cn(
−2

RAdS

)n

]−1

8

α′ −
2

R2
AdS

+
∑

n=2

cn(
−2

RAdS

)n = 0
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à Recall also that in the stronges version of the conjecture of the Ads/CFT duality, the AdS5 × S5

structure is assumed to remain valid even in the region of large curvature.

à We also consider the fact that the gauge properties extracted from the gravity side “are sensible” as

a further evidence for this conjecture.
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Summary and open questions

à Several families of solutions of thenon-critical type II equations of motion were constructed.

à The Adsp × Sq solutions and their near extremal generalizations are useful for the gauge/gravity

duality.

à The non critical gague/gravity duality implies a novel ’t Hooft limit different that of the usual AdS/CFT

duality.

à Using the near extremal AdS6 as our lab we extracted the Wilson line , ’t Hoof loop, glueball spectrum

etc.

à Following KM we incorporated space filling Nf flavr branes anti-branes and derived new Adsp ×Sq

solutions

à The anomaly a function can be computed from SUGRA for several models in various space-time

dimensions.

à We have certain evidence to support our claim that the Adsp × Sq structure survives higher order

curvature corrections.

à However, controlling the higher order curvature corrections and the construction of string theories is

obviously the most important open question.
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à An analysis of the Killing spinors and the determinations of the space-time supersymmetries.

à Comparison between the gauge properties extracted from critical versus non critical SUGRA back-

grounds.

à Constructing SUGRA duals of confining gauge theories with fundamental flavored quarks .

à Scattering amplitudes of the non critical strings should be closer to reality than the critical ones since

the are no KK that can take part in the scattering in critical models.
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