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andom variables have finite variance and without loss of

ro mean. Then we can always write
Y =0X +evx

Ey_X) — 0, called the linear least squares regression
Y" on X. Of course its statistical usefulness may be

e defining condition
B = cov(Y, X){cov(X, X))} .

‘es property is easily verified.



More on linear least squares regression

More generally if Y and X are vectors we can regress each compo-
nent of Y on X and require the error to be uncorrelated with all the

components of X to obtain
Y =BX + ¢,

Where, with Yy x = B(Y XT), Yxx = BE(XX?)

B=YyxXyy.



Concentration matrices

Write W = Y37 Y so that
cov(W, W) = ¥yy, cov(Y, W) = I.
Thus in the equation
W, =o'Yi +02Yo + ... + o oY
W1 is uncorrelated with every Y except Y;. That is,
Y, = (_012/011)}/2 N (_Old/011>Yd 4 Wl/a”
is a linear least squares regression equation. Thus

pijvig = —0 [(0%a?T) 2.



Partial and total regression coefficients

Use notation of Yule that shows in a regression coefficient what other

variables are involved, i.e. linearly conditioned on. Thus with three

variables Y, X, U we write

Y = ByxuX + ByvuxU + ey xu,
U=0uxX +evx.

Then directly (Cochran, 1938)

Byx = Bvx.u + BruxBux



Gradient analogue

If y = y(x,u) then

Dy/Dx = 0y/0z + (0y/0u) (du/dzx).
Compare with
Byx = Pyx.u + BruxBux

The generality of the gradient result suggests that the probabilistic
version can be extended.

Also direct extensions to vector Y, X, U.



A fairly general formulation

Fyx(y;x) = /FY|XU(y;$,U)duFU|X(U;~’U)-
Suppose X continuous. Then simplifying the notation slightly
8FY|X/837 — /(8Fy|XU)/aCEduFU|X . FYIX(j@duFUIX/aCE).

Integrate the second term by parts and assume regular behaviour at

the terminals to give

8Fy|X/8x == /(aFy|XU/aZL"duFU|X
—8Fy|XU/E9u 6FU|)(/(9£C)d’LL



Quantile regression

Define the € point of the conditional distribution of Y given X by
Fyix(y(2); 2) = c.
Differentiate with respect to x at fixed €. Then
Fyix(y(z); z)dy (z) /dz + OFyx (y“(x);z)/0z = 0.

Define

1 OFy|x(y; x)
fY|X(y; T) Oz |

Yyx(y; x) =

etc.



Quantile regression ctd

Thus

Yyx(y; T) = /{’YYX.U(ZU; z,u) + yyux(y;u, ) vox (u; )}
furyx (u;y, z)du.

Compare with

Byvx = Byrxu + BvuxBux.



Another implication of formula for partial and total regressions

Suppose that Y is a response, X an explanatory variable and that
we are interested in the dependence of Y on X conditionally on

U. Suppose further that U is unobserved. Suppose we are really
interested in the dependence of Y on X, U jointly but can observe

only dependence of Y on X.



An unobserved confounder

v v

X

Above formula shows that By x y = By x if and only if

ByuxBux =0,

Requiring either that U has no (linear) effect on Y once we have
accounted for X or that U and X are unrelated. The second
condition is satisfied if X is a randomized treatment (and U prior to

X).



General distributions

By the quantile regression formula if v x (u, ) = 0

Yyx(y;T) = /'YYX.U(%xau)mex(U;y,ZIJ)du.

Various qualitative conclusions follow. Randomization preserves the
primary features of the distribution of Y given both X and U in the

conditional distribution given only X .



Multivariate response or outcome variables

Two broad possibilities
e components have an individual identity which should be preserved

e transformations of the components allowable to achieve clearer

interpretation

Relatively simple case (J. Mult. An. 42 (1992), 162-170).

Not so simple time series case (Proc. Nat. Acad. Sci 96 (1999),
12273-12274).



Multivariate responses

Vector Y of response variables.

Two cases

e components individually interpretable

e at least for some interpretive purposes, transformation of compo-

nents reasonable.

Simple formulation of 2. Vectors of responses Y and of explanatory
variables X . Transform Y to Y* = AY so that Y;" depends only
on X1, etc. In simple 2 X 2 case leads to chordless four-cycle or

seemingly-unrelated regression model.



Special case When dim(Y') = dim(X) solution is
Y* =557
Note
cov(Y* X) = cov(X, X).
In general

YV =5 By, Pye) B2l Y



An example

Preoperative patients
e Y7, log palmitic acid
e Y5, log linoleic acid

e Y3, log oleic acid

e X blood sugar

o X, sex



i 110.3 17.5 —163.5
—-3.0 &.1 —9.7

Simple interpretation



Time dependent variables

Suppose initially that Y is observed at two time points giving Y5 and
Y7 . For the moment ignore X. Matrix By; of regression coefficients
of Yo; on Yi1,...,Y7,. Now transform both vectors by the same
matrix A to give Y* = AY. This gives a new matrix of regression
coefficients

Bi, = ABy A
This is diagonal if and only if
ABQl — DA,

where D is diagonal. That is the rows of A are left eigenvectors of
B21-



Some complications

In the equation
AB21 — DA,

The matrix Bsy; is not in general symmetric.



Some consequences

e when By is replaced by an estimate Bgl a significant imaginary
component in particular to one of the leading eigenvalues would

imply inconsistency with the formulation
e how would this be tested?
e essentially zero eigenvalues would have clear interpretation
e extension to more than two time points

e inclusion of X

Cox, D.R. and Wermuth, N. (1999). Derived variables for longitudinal
studies. Proc. Nat. Acad. Sci. 96, 12273-12274.



The Barry-Caerphilly milk study

Outline of study
Work of Dr Andrew Roddam
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Figure 5.3: Fitted graphical

model for the marginal analysis of the log weight of children.
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Summary

Structure of design

Plan of analysis

Detailed form of qualitative conclusions
Presentation

Derivation of associated properties
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