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Abstract. In this introductory lecture, we discuss the cohomology ring of
the full flag variety and note the relation to Schubert polynomials. We closely
follow the presentation in [1]. The interested reader may find more details
there.

1. Some facts on cohomology

We first state some properties of cohomology which will be used in what follows.
Let Y be a nonsingular projective variety. We then have the following:

(1) An irreducible subvariety Z of codimension d in Y determines a cohomology
class [Z] ∈ H2d(Y ).

(2) If Y has dimension N , then H2N (Y ) = Z, with the class of a point being a
generator.

(3) If two subvarieties Z1 and Z2 of Y have complimentary dimension and meet
transversally in t points, then the product of their classes is t ∈ H2N (Y ) =
Z. We write 〈[Z1], [Z2]〉 = t.

(4) If Y has a filtration

Y = Y0 ⊂ Y1 ⊂ · · · ⊂ Ys = ∅
by closed algebraic subsets, and Yi\Yi+1 is a disjoint union of varieties Ui,j ,
each isomorphic to an affine space Cn(i,j), then the classes [U i,j ] of the
closures of these varieties yield an additive basis for H∗(Y ) over Z.

We will also use the fact that any continuous map f : X → Y between two
topological spaces defines a pullback homomorphism f∗ : HiY → HiX.

2. Schubert varieties

Fix once and for all a complex vector space E of dimension m. We are interested
in the (full) flag variety

Fm = {E• = (E1 ⊂ E2 ⊂ · · · ⊂ Em = E) | dim Ei = i}.
Recall that this variety is split into cells called Schubert cells which are cut out of
the flag variety by specifying the dimensions of the intersections of the steps in the
flag E with the steps of some fixed flag. More precisely, fix a flag

F1 ⊂ F2 ⊂ · · · ⊂ Fm = E, dim Fq = q.
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When we identify E with Cm by picking a basis, we will take Fj to be the subspace
spanned by the first j elements of this basis. Then, for any permutation w in the
symmetric group Sm, we define the Schubert cell

X◦
w = {E• ∈ Fm | dim(Ep ∩ Fq) = #{i ≤ p : w(i) ≤ q} for 1 ≤ p, q ≤ m}.

We can also describe the Schubert cells as follows. Every flag E• ∈ X◦
w has Ep

spanned by the first p rows of a unique row echelon matrix, where the pth row has
a 1 in the w(p)th column, with all 0’s to the right of these 1’s, and all 0’s below
these 1’s. For example, if w = 3 5 1 4 2 in S5, these matrices have the form




∗ ∗ 1 0 0
∗ ∗ 0 ∗ 1
1 0 0 0 0
0 ∗ 0 1 0
0 1 0 0 0




where the stars denote arbitrary complex numbers. So we see that each Schubert
cell is isomorphic to the affine space Ca where a is the number of stars appearing
in the above description. It is an easy exercise to show that the number of stars is
precisely the length of the permutation w defined by

l(w) = #{i < j | w(i) > w(j)}.
Thus

X◦
w
∼= Cl(w), w ∈ Sm,

⊔

w∈Sm

X◦
w = Fm

We also define the dual Schubert cells Ω◦w as follows. Let F̃q be the subspace of
E = Cm spanned by the last q vectors of the basis. Then define

Ω◦w = {E• ∈ Fm | dim(Ep ∩ F̃q) = #{i ≤ p : w(i) ≥ m + 1− q} for 1 ≤ p, q ≤ m}.
In terms of the description above, Ω◦w consists of flags spanned by rows of a row ech-
elon matrix with 1’s in the (p, w(p))th position and 0’s under these 1’s, as before, but
this time with 0’s to the left of these 1’s. Thus for the element w = 3 5 1 4 2
in S5 considered above, these matrices are of the form




0 0 1 ∗ ∗
0 0 0 0 1
1 ∗ 0 ∗ 0
0 0 0 1 0
0 1 0 0 0




.

We see that Ω◦w ∼= Cn−l(w), where n = m(m− 1)/2 = dimFm.
The Schubert variety Xw is defined to be the closure of the cell X◦

w. Similarly,
Ωw is defined to be the closure of Ω◦w. These are irreducible subvarieties of Fm of
dimensions l(w) and n− l(w), respectively. In particular,

Xw =
⊔

v≤w

X◦
v , Ωw =

⊔

v≥w

Ω◦v,

where v ≤ w and v ≥ w are referring to the Bruhat order on Sm. Note that v ≤ w
implies l(v) ≤ l(w).
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For 1 ≤ d ≤ n, let

Zd =
⋃

w : l(w)≤d

X◦
w =

⋃

w : l(w)≤d

Xw.

So Zd is a closed algebraic subspace of Fm. Furthermore, Zd\Zd−1 is a disjoint
union of the cells X◦

w
∼= Cd (i.e. those X◦

w with l(w) = d). Thus, it follows from
the facts in Section 1 that the classes of the closures of these cells give an additive
basis for the cohomology of Fm.

Now, if w0 = m m− 1 . . . 1 in Sm, we have the following:

Lemma 2.1. For w ∈ Sm, [Ωw] = [Xw∨ ], where w∨ = w0w (equivalently, w∨(i) =
m + 1− w(i) for 1 ≤ i ≤ m).

Combining this with the above, we see that the Schubert classes

σw = [Ωw] = [Xw∨ ] = [Xw0w] ∈ H2l(w)(Fm)

form an additive basis of H∗(Fm). Note, in particular, that the odd cohomology
of Fm vanishes. In the next section, we will explore the multiplicative structure of
the cohomology ring.

3. The cohomology ring of the flag variety

We have seen in Section 2 that the Schubert classes σw, w ∈ Sm form an additive
basis for the cohomology ring of the flag variety. We would now like to examine the
multiplicative structure of this ring. In particular, we will give a presentation in
term of generators and relations and express the Schubert classes in terms of these
generators.

Recall that the intersection pairing is a bilinear map

Hd1(Fm)×Hd2(Fm) → Hd1+d2(Fm).

Using the facts in Sections 1 and 2, one can show that for partitions v and w of
equal length,

〈[Xw], [Ωv]〉 = δvw.

In terms of the descriptions given in Section 2, the varieties [Xw] and [Ωw] intersect
transversely at the point corresponding to the flag E• with Ep spanned by the first
p rows of the matrix with 1 in the entries (p, w(p)) and zeros elsewhere. Thus the
basis consisting of the [Xw] is dual to the basis given by the Schubert classes.

The cohomology ring of Fm is generated by some basic classes x1, . . . , xm in
H2(Fm) which we now describe. There is a natural vector bundle Ui, 1 ≤ i ≤ m,
over Fm of rank i. The fiber of the bundle Ui over a point in Fm corresponding
to a flag E• is the vector space Ei of the flag. These bundles form a universal or
tautological filtration

0 = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um = EFm .

Here EFm = E ×Fm is the trivial bundle. We then form the line bundles

Li = Ui/Ui−1.

Now, a line bundle L on a nonsingular projective variety X has a first Chern class
c1(L) in H2(X). This class is equal to [D] where D is the subvariety of X consisting
of the zeros of a nice section of the line bundle L. We set

xi = −c1(Li), 1 ≤ i ≤ m.
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Recall that the ith elementary symmetric polynomial ei(X1, . . . , Xm) is the sum
of all monomials Xi1 . . . Xik

for all strictly increasing sequences 1 ≤ i1 < · · · < ik ≤
m.

Proposition 3.1. The cohomology ring H∗(Fm) is generated by the basic classes
x1, . . . , xm subject to the relations ei(x1, . . . , xm) = 0, 1 ≤ i ≤ m. That is,

H∗(Fm) ∼= Rm := Z[X1, . . . , Xm]/(e1(X1, . . . , Xm), . . . , em(X1, . . . , Xm)).

The classes xi1
1 xi2

2 . . . xim
m with exponents ij ≤ m− j form a Z-basis for H∗(Fm).

We now have two bases for the cohomology ring H∗(Fm). The first is the geomet-
ric basis {σw | w ∈ Sm} and the second is the algebraic basis {xi1

1 xi2
2 . . . xim

m | ij ≤
m− j}. We would like to express the geometric basis in terms of the algebraic one.

There is a natural embedding ι : Fm ↪→ Fm+1 that sends a flag E• in E = Cm

to the following flag in E′ = E ⊕ C = Cm+1:

E1 ⊕ 0 ⊂ E2 ⊕ 0 ⊂ · · · ⊂ Em ⊕ 0 ⊂ Em ⊕ C = E ⊕ C = E′.

This is a closed embedding and identifies Fm with the set of flags in E′ with mth

member E ⊕ 0. If we regard Sm as the subgroup of Sm+1 fixing m + 1, we see
that for all w ∈ Sm, ι maps the Schubert cell X◦

w in Fm isomorphically onto the
Schubert cell X◦

w in Fm+1 and that ι(Xw) is the Schubert variety corresponding to
w in Fm. We also have the pullback homomorphism

ι∗ : H2d(Fm+1) → H2d(Fm).

When we consider Fm for different m, we denote the element σw ∈ H2l(w)(Fm) by
σ

(m)
w .

Proposition 3.2. (1) For w ∈ Sm, we have ι∗(σ(m+1)
w ) = σ

(m)
w .

(2) We have ι∗(xi) = xi for 1 ≤ i ≤ m and ι∗(xm+1) = 0.

Define a map from Rm+1 to Rm by Xi 7→ Xi for 1 ≤ i ≤ m and Xm+1 7→ 0.
Then by the above proposition, the diagram

Rm+1

∼=−−−−→ H∗(Fm+1)y
y

Rm

∼=−−−−→ H∗(Fm)
commutes.

Proposition 3.3. Let w ∈ Sk. There is a unique homogeneous polynomial of degree
l(w) in Z[X1, . . . , Xk] that maps to σ

(m)
w in H2l(w)(Fm) for all m ≥ k. We denote

this polynomial by Sw = Sw(X1, . . . , Xk). It is called the Schubert polynomial
corresponding to w.

Thus the Schubert polynomials tell us how to write the geometric basis of the
cohomology of the flag variety (given by the classes of Schubert varieties) in terms
of the algebraic basis.

Schubert polynomials will be discussed in more detail in a later talk in this
workshop. We mention here only a few examples.

Sid = 1,

Ssi = X1 + X2 + · · ·+ Xi,

Sw0 = Xm−1
1 Xm−2

2 . . . Xm−1, w0 = m m− 1 . . . 1 ∈ Sm.
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Here id is the identity permutation and si is the permutation interchanging i and
i + 1.

If one multiplies two Schubert polynomials, the result can be written as a linear
combination of Schubert polynomials:

Su ·Sv =
∑
w

cw
u,vSw.

One can see from the geometry of flag varieties that the coefficients cw
u,v are nonneg-

ative integers. While there are algorithms for computing these coefficients, there
is not yet any combinatorial formula for these numbers, such as the Littlewood-
Richardson rule for multiplying Schur polynomials which are the analogue of Schu-
bert polynomials for the cohomology of the Grassmannian.
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