Asset Allocation with Annuities for Retirement Income Management

► Paul D. Kaplan, Ph.D., CFA Vice President, Quantitative Research Morningstar, Inc.

Agenda

- ► The retirement income management problem
- A model without annuities
- ► Adding single premium immediate annuities to the model
- Refinements to the model
- Summary

The Retirement Income Management Problem

- Generate a steady stream of real income during retirement from
 - ► Fixed income sources such as Social Security & DB plans
 - ▶ Payments from annuities purchased with retirement savings
 - Withdrawals from remaining invested funds
- If income goals cannot be met with fixed sources and annuities, must not exhaust funds before death
- May want to leave an estate
- Market risk & longevity risk must both be managed

Retirement Income Management Decisions

- ► How much income to generate
- ► How much of nest egg to put in annuities
- ▶ How to invest remaining nest egg
- ▶ How much to leave for heirs

Simulation Using Withdrawal Experiments

Percentiles of Simulated Balances at Various Ages

A Model Without Annuities

- Parametric model of real asset returns
- Preset asset mixes
- Constant real income level
- No taxes
- Probabilistic time horizon
- ► Find relationship between withdrawal rate and success probability

Real Return Assumptions on Asset Classes and Mixes

Asset Mixes

Solving the Model for a Given Asset Mix

- ▶ 1,000 experiments
- ► For each experiment at each horizon, solve for withdrawal rate that just works
- At each horizon, sort withdrawal rates across experiments to find relationship to success probability
- ► Fit smooth curve to withdrawal/probability relationship

Withdrawal Rate vs. Success Probability: 20-Year Horizon

Modeling Uncertain Time Horizon

- ► Length of retirement period unknown
- Gender-based mortality rates have been estimated and published
- Calculate probability of death for each horizon from mortality rates

Incorporating Uncertainty of Horizon

- ► Estimate withdrawal/probability relationship for all horizons
- Calculate probability of death for each horizon
- Weigh success probabilities by death probabilities
- ► Fit smooth curve to death probability-weighted withdrawal/probability relationship

Mortality Rates

Death Probabilities: 65-Year Old Male

Withdrawal Rate vs. Success Probability: 21 Asset Mixes

Equity Allocations of Mixes with Highest Success Probabilities

Adding Annuities to the Model

- Annuity assumptions
 - ▶ Single premium
 - ► Fixed nominal payout until death
 - ▶ No beneficiaries
 - ▶ Price based on age & gender
 - ▶ Decision irreversible
 - Can only purchase now
- ► Example: 65-year old male receives \$7.50/year for every \$100 now

Modeling Inflation

- Need for inflation model
 - ▶ Real annuity payout = nominal payout ÷ price index
 - Price index = cumulative value of inflation rate
- Models of inflation rate
 - Serial correlation
 - Mean reverting
 - ► Inflation surprises correlated with real returns on stocks, bonds, & cash
 - ▶ In example, starts at 2.5%, reverts to 2.5%

Three Models of Inflation

Constant inflation rate

$$\pi_{t}=\pi_{\mathsf{M}}$$

- ► One-lag autoregressive $\pi_{t} = 0.1145\pi_{M} + 0.8855\pi_{t-1} + 0.0128z_{t}$
- ► Two-lag autoregressive $\pi_{\rm t} = 0.2222\pi_{\rm M} + 1.3876\pi_{\rm t-1} 0.6098\pi_{\rm t-2} + 0.0086z_{\rm t}$

Average Price Indexes with Alternative Inflation Models

Autocorrelation Functions of Alternative Inflation Models

Forecast Volatilities for Alternative Inflation Models

Combining Annuities with Asset Mixes

- ▶ 420 combinations
 - ► 21 asset mixes
 - ▶ 20 levels of annuitization (0%, 5%, ..., 95%)
- Calculate income/probability relationship for each combination
- ► For each income level, find combination with highest success probability

Success Probabilities for 5% Income Level*

*Inflation generated by the one-lag model.

Highest Success Probabilities with & without Annuities, & with Alternative Inflation Models

The Estate Dimension

- Annuities may only have a limited impact on success probability
- ► Annuitization decision largely trade-off between success probability &
 - Availability of funds for additional spending in the future
 - ► Potential size of estate
- ▶ Can measure this dimension with median estate value

Failure Probability vs. Median Estate Value (5% Income Level & One-Lag Inflation Model)

Failure Probability vs. Median Estate Efficient Frontier

Effective Asset Class / Annuity Combinations

Refinements to the Model

- ► Two-person mortality
- ► Non-portfolio income
- ► One-time income & spending events
- Changes in spending level
- ► Short-term risk aversion
- Required minimum distributions on tax-deferred accounts

Two-Person Mortality

- ► Portfolio supports two people
- Spending level changes when one person dies
- ► Estate left when both die
- Model using mortality tables

Non-Portfolio Income

- Social Security
- ▶ Defined benefit plans
- ► Part-time jobs
- ► Real estate investments

One-Time Income & Spending Events

- ▶ One-time income events
 - ▶ Downsize home
 - ▶ Inheritance
 - ► Life insurance
- ▶ One-time spending events
 - Special vacations
 - ▶ Purchase of luxury items
 - ► Tuition for grandchildren

Changes In Spending Level

► Life style changes

► Medical expenses

Summary

- ► During retirement, both market & longevity risk must be managed by making choices regarding
 - ► Income generation
 - Annuitization
 - ► Investments
 - Estate planning
- Simulation can be used to portray trade-offs between
 - ▶ Income level
 - ▶ Portfolio volatility
 - Success probability
 - Estate size

Summary

- Since fixed annuities pay a constant nominal amount, we need to model inflation to model their real payouts.
- Choice of inflation model significantly affects results.
- ► When we consider estate value, there is an efficient trade-off between failure probability & median estate value.
- ► Points along the efficient frontier have different combinations of equities, conventional fixed income, & fixed annuities.
- ► The model can be extended to consider two-person mortality, fixed cash flows, short-term risk aversion, & other factors.

