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e Background on SDP; Notation and Motivation

e Robust, (‘non-interior’) path-following algorithm for D
(outline of GN PCG method using LP)

e Application to Nearest Euclidean Distance Matrix Problem

e Numerics (Comparisons with a dual algorithm)
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Notation and Motivation

min f(X)
(SDP) subjectto AX =b
X =0,

where:

f:8" — R convex function
S" n x nreal symmetric matrices
X(>) = 0 denotegositive (semi)definite
A: 8" — R™ linear transformation

( (AX); = (A;, X) = trace A, X, A;=Al,i=1...n) )
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Linear Primal-Dual Pair of SDPs

(looks/behaves like Linear Program, LP)

max (C, X) =traceCX
(PSDP) subjectto AX =0
X >0
min by
(SDP) subjectto A*y — Z =C
Z =0

adjoint operator: A"y = 5"y A,
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(Some of the) APPLICATIONS

e Relaxations ohard combinatorial problems: e.g. max-cut;

graph partitioning; quadratic assignment problem;
max-clique.

e NLP e.g.: quasi-Newton updates that preserve positive
definiteness; Trust region algorithms for large scale
minimization; Extended SQP techniques for constrained
minimization.

e Partial Hermitianmatrix completion problems and Euclidean
distance matrix completion problems.

e Engineering problemssuch as: Ricatti equations; min-max

eigenvalue problems; matrix norm minimization; eigenealu
localization.
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SIMILARITIES to LP: (i) Duality

payoff function, playei” to playerX (Lagrangian)
L(X,y) := trace (CX) + y'(b — AX)
Optimal (worst case) strategy for play&t.

= in L(X
o = i 0K o)

Using the b— AX =0,
recovers primal problem.
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adjoint

L(X,y) trace (CX) + y' (b — AX)

bly + trace (C' — A*y) X

perator, A*y = > .y A;

A"y, X) = (y, AX), VX,y

- O=A =<0



exploit Hidden Constraint

f = in L(X,y) <d" := mi L(X
e o L, )

dual obtained from optimal strategy of competing player, Y.
C' — A*y < 0yields the dual

d* = min bty

(DSDP)
st. Ay > C

for the primal

ES

p* = max trace(CX
(PSDP) st. AX =0

X =0

Robust Algorithms for Large Sparse Semidefinite Programgr(@DP) — p. 9



Characterization of Optimality

primal-dual pairX,y (slackZ > 0)

Ay—7Z =C dual feasibility
AX =b primal feasibility

ZX =0 complementary slackness

ZX =ul perturbed C.Sy >0

Basis for methods:

e primal simplex (maintain: primal feas. & compl. slack.)
e dual simplex (maintain: dual feas. & compl. slack.)

e Interior point (maintain: primal feas. & dual feas.)
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SDP | Application: (Direct) Max-Cut
Relaxation

GraphG = (F,V);

V| =n (nodes)w;; weights on edges;
max %Zi<j wii(1 — ziz5), x € {£1}™

Equater; = 1 with ; in setZ andx; = —1 otherwise.
Equivalent problem: homogeneo(s1)-QQP

w* = max q(z) = 2'Qx = trace Qzz’, =z € {£1}"

LIFTING : X = gzt

Relax the rank-1 condition oN to get linear SDP.
p” < max{trace QX : diag (X) =e¢, X = 0}
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SDP from general quadratic approx?
(Lagr. Relax.!)

1
%@%:§¢Qw+y%+f%y€%”

¢* = min  qo(y)
(QQP) st. qi(y) <0
1=1,...m

Lagrangian L(y,z) = qo(y) + > i igi(y)

or equivalently
L(y,z) = 3y'(Qo+ >, 2:Q;)y (quadratic iny)
+yt(bo + > iy z3b;)  (linear iny)
+(co + Y ;) (constant iny)
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\Weak Duality

follows from definition of dual program and hidden consttain

4" = in I, < ¢* = mi Ly, ).
et (y,z) < ¢ o T (y, )

Now homogenizemultiply linear term by new variablg,

m
yoy'(bo + Y wibi), yg = 1.
i=1

and add new constraint to Lagrangian (Lagrange multip)ier

t(yg — 1)
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Homogenization

d* = maxmin
x>0 vy

— max min

— max min
x>0t Yy

L(y, x)
L Qo+ X0 miQ)y  +tyl

+y0y" (bo + > ieq xib;)
—|—(Co —+ Z:Zl 337;(27;) — 1
W Qo+ X0 7iQi)y  +ty

+y0y" (bo + > ieq xib;)
—|—(CO -+ Zyil CIZ@C@) — 1

hidden semidefinite constraint yields SDP
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ApPpIy Hiaden SDP Constraint
(Hessian psd

0 b6 m—+1
B = andA : R — Sp+1
bo Qo

A t R [ t Zyll xibg -
v ) Do T >y Qs

X

Lagrangianpsd B — A ( t ) = 0.

NOTE There is NO hidden constraint on the@; if all ¢; are
convex.Better algorithms exist for the convex case, e.g. proximal
methods, using quadratic cones, ...
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Dual of Dual — SDP Relaxation

dual program is equivalent to SDP (with = 0)

d* = sup —t+ Z:’il T;C;

D) s.t. A<;><B

re R teR

As In LP, dual of dual is obtained from optimal strategy of the
competing player:
d* = inf trace BU

) s.t. A*U = ( s )

c
U = 0.
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Tractable Relaxations

In some sense, Lagrangian relaxatiobest tractable

relaxation.
There arenigher order relaxations:

e.g. fromX = 22! from max-cut relaxation (frorm? =)

1
svec X

2nd LIFTING : xzx?a:k = x;rp, Y = ( ) (1 svecX)

Public domain software: e. jNEOS
URL: www-neos.mcs.anl.gov
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(Perturbed) Optimality Conditions

Forbarrier parameter ;. > O:
Ay — 7 —-C dual feasibility
F.(X,y,72) = AX — b = ( primal feasibility
ZX — ul pert.compl. slack.
For SDP:

Fi: 8" xR xS — 8" x B x M"
l.e. overdetermined nonlinear system
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(Non) Interior Path-Following

lllustration/Motivation on LP Case

p*:= min c'z (or {(c,z))

(LP) s.t. Ax =10
r>0 (orx>=0)

d* == max bly
(DLP) st. Aly+z2=c
z>0 (orz>=0)

Assume:A € R™*" full rank (onto); LP, DLP strictly feasible
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dual log-parrier problem,;
parameter 1 > 0

d;, == max bly + u Z?’:l log z; (+plogdet(z))
st. Aly+z=c (AT = A%)
z >0 (z > 0).

stationary point of the Lagrangian / optimality conditions

Aly+ 2 —c r,z>0, (>=0)
F.(z,y,2) = Az —b =0, X = Diag (x)
X —uz1 7 = Diag (2)

central path:= set of solutiongzx,,, y,, 2,), # > 0
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Jacobian lll-conditioning

As p — 0, Jacobiant’ (z, y, z) ill-conditioned near central path

Cure/Fix: Make nonlinear equatiors , l.e.
for Newton type methods;

premultiply by block-diag matrix with block§, I, 7):

0 Aly +2—c¢
0 | Fulz,y,2) = Ax — b
Z ZX — ul

Fﬂ(xayaz) N

O O M~
O ~N O

recovers modern primal-dual optimality paradigm
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)ited Special Structure

ation for the Newton direction



Overdetermined system in SDP case

S" xR xS - S x B x M"™
apply symmetrization:

0 0 AL T
0 A 0 0
S 7 0 X

e.g. last equation after symmetrization:
ZX + XZ —2ul =0 (AHO search direction)

O O N
O ~N O
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Readuction/Block-Elimination
— Normal Equations

Step 1 Eliminate Az from row 3):

I 0 0\ /0 AT 1T 0 Al I
0o I o0ll4a o ol=l4a o o].
x 0 1/ \z o0 x 7 _xAT 0

Define:
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ight-hand side




Step 2. Eliminate Az from row 2

(and scale row 3

I 0 0 0 A" T

F,=P K := 0 I —-Az1 A 0 0
0 0o Zz! Z —xAT 0
0 AT I,

= 0 Az lxAT 0
I, —Z71xAT 0

AZ -1 X AT can have:

e uniformly bounded condition numbeg.g. Guler et al 1993

e Siructured singularitye.g. S. Wright 95,97/ M. Wright 1999
But
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ight-hand side becomes

Ry — Ry
P = | —rp,+A(x - Z7'XR;— pZte)
Rz Z_lXRd—x—|—,uZ_1e




The condition number of ! F}, diverges to infinity
If x(u)i/z(w); diverges to infinity, for someé asyu converges to O.
The condition number ofF},)* F}, is uniformly bounded if there

exists a unique primal-dual solution.
PROOE Note that

I, —7Z-lx At 0
FErF, = | —AXZ™ ' (AAT + (AZ7'XAT)2 + AZ2X2AT) A
0 Al I

By interlacing of eigenvalues, ...
The condition number of’, Is at leasO(1/ ).
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EXAMPLE

.CC*_ 1 >|<__1Z>|<_ 0 .
- O 7y_ ) - 2 )

Initial points
o (9-183012¢ — 001  _ (2.193642¢ — 008
-\ 1.356397¢ — 008 /'~ \ 1.836603¢ + 000 /)’

y = —1.163398¢ + 000.
residuals and duality gap

[7p]| = 0.081699, || R4|| = 0.36537, 1 = x' 2/n = 2.2528¢ — 008
5 decimals rounding before/after arithmetic

centering witho = .1

BUT:
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search directions found

using: full matrix F7, and backsolve matrix;,
8.17000e — 02 ( \
AV —1.35440e — 08 —1.35440e — 08
Ay | = | 1.63400e — 01 | ; 1.63400e — 01
AV —2.14340e — 08 0.00000e + 00
\ 1.63400e — 01 / 1.63400e — 01

error iInAy is small;
but error after backsubstitution foAz); Is

4.18630¢ + 07
—1 T

(AgéﬁT> — | —4.18630¢ + 07

. —7.38540¢ — 09
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Alternate Second Step;
Stable Reduction

Assuming! A = |[,,, E].
Partition diagonal matri¥, X using vectors

o zm, . Lm T Xm
= (3) o ()= ()

I, 0 0 0\ /0 o A" I,)
0 I, 0 o0||[I. E 0 0
I — ik mn
: BR=10o —Z, 5, 0|z, 0 —xX, o0
o 0 0 I,/ \o0o Z -XET 0]
[0 0 AT L)
_ |, E 0 0
0 —ZnwE —Xm 0|
\0  Z  —-X,ET 0
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ight-hand side becomes

Aly+2—c Rq
Az — b = —Ps i
ZXe— e —XRyg+ ZXe— e

‘ R \

—ZmTp — X (Rg)m + ZmXme — pe
\ — Xy (Rg)y + Zy Xye — pe )




Summary: Path-following;

e Sstaying interior is a heuristic for staying within a neighiboood
of the central path

e staying interior is required for numerical accuracy whelvisg
the current ill-conditioned reduced systems
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(Nearest) Eucliaean Distance Matrix
Completion using SDP

Given:
pre-distance matrix A € S™ (nonnegative with zero diagonal)
welght matrix H € 8™

1 .
( ) p* =min SIH o (A - D)||% subject to:D € EDM

EDM = {D = (d;;) € 8™ : d;; = ||lz; — x;||?, for somez; € R*}, k is embedding dimension

o denotedHadamard (elementwise) matrix product
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e.g. molecular conformation problems in chemistry;
multidimensional scaling and multivariate analysis penis in
statistics; genetics, geography, ....
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Mixed-Cone Formulation

direct approach using a mixed SDP and second-order (or tgren
cone problem:

min «o
st. Y=Ho(L(X)—A), |[Y|r<a
XeS" 1 yesS” X eSDP

whereX € SDP = L(X) € EDM

(Public domain software packages are available, but pnokieze
becomes large)
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ection betweerSDPand EDM

B:[:leg...xn], kXxXn

9 T 9 9
il =l [ 8i= =20 S| S|

—2BTB +e (diag (BTB))T + (diag (BTB)) el

BB =0



Operator Notation:

us2vec , us2Mat , svec , sMat

n—l—l)
Y

r = svec (X) c R(" X = sMat (z)

/2 times vector (columnwise) from upper-triangsf
("31) = n(n + 1)/2; v/2 guarantees isometry.
sMat := svec ~! mapping intaS™
adjoint transformationMat * = svec:
(sMat (v),S) = tracesMat (v)S
= ovlsvec(S) = (v,svec (9))
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Characterization of EDM using SDP

DisEDM (c S")

> 5 0 diag (X)*
D=L(X):= (diag (X) diag (X)e" + ediag (X)" - 2X> ’

for someX > 0, X € S™1
(e Is vector of ones)

L:8" 1 -8, £(S"')=EDM
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t/generalized inverse

tition:



Duality and Optimality Conditions
(using X = sMat (x) + I) an equivalent problem is:
/= min %HH o (A—L£(X))|> subjectto X = 0

strong (Lagrangian) duality holds (Slater’s holds for irand
holds for dual if the graph is complete)

1
ot = “|Ho(A—-L 2 _trace AX
po=v rgggm);n |H o ( (X)) || — trace
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\WWolfe dual and optimality conditions

With
C:=L*(HP o A),
optimality conditions are:

X = sMat(x) >0 (primal feasibility)
A = c*{H<2>o(£(X))}—C, A >0 (dual feasibility)
AX = 0 (compl. slack.)

equivalent dual problem:

max S| H o (A— L(X))||% — trace AX
(0.1) subjectto A = L* {H 2) o (L(X } =10
A > 0.
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eliminateA

exact primal-dual feasibility during iterations
full rank Jacobian at optimality.

single bilinear (perturbed) equation in z;

F(z) : RG) — pn?

F(z) = [E* {H<2> : (,C(X))} _ C} X — ul =0

typical SDP - overdetermined system of bilinear equations
current approach is to symmetrize - which results Iin
Ill-conditioning! from rank deficient Jacobian at optintgli
BUT, here, no symmetrization used,;

solve using (an inexact) Gauss-Newton method - with PCG
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Let W(z) := L* {H<2> ; ([,(x))}
Linearization for search directiofiz at currentr = svec (X):

F(z)Ar = W(z) — C] Az + W(Az)] X

This Is a linear, full rank, overdetermined system.
Our search directiorhz Is its (approx.) least squares solution.
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Algorithm: p-d I-e-p framework

e INnitialization:

ee INput data: a pre-distance x n matrix A
ee POsitive tolerances:

€1 (stopping)- (Iss accuracy)ks (crossover),

ee Find initial strictly feasible points: both
XOAN =W(X)-C) = 0; >0
ee Set Iinitial parameters:

gap = trace AV XV: = gap/n; objval = f(XO); k = 0.
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Algorithm continued 1

e While min{ obﬁﬁﬂ ,objval} > ¢

ee Solve Iss for search directionaccuracy
e min{y, 1})

F(;M(xk) (A:vk) = —F(w(:vk),
whereoy, centeringuy, = +trace W(X*) — C) X*

Xkl = x*k —I—CvaXk, ay > 0,

so that bothX**1 (W(X*t1) —C) =0
(o, = 1 after the crossover.)
ee Update

EL—k+1 andthen

/ galpbust Algorithms for Large Sparse Semidéf\nite Programgr(@DP) — p. 46
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Algorithm continued 2

e While min{ obﬁ?ﬂ ,objval} > ¢

ee SOlve Iss for search direction

ee Lpdate
k<« k-+1 andthen

gap
objval + 1

o (Setak = 0 If min{ ,objval} < 63)

e end (while).
e Conclusion: D = £(X) € EDM Is approx. toA
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After thecrossover centeringr = 0 and steplength = 1, we get
g-quadratic convergence; allows foarm starts.

Long stepscan be takemeyond the positivity boundary. (tests
show Improved convergence rates)
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ynditioning

(A+ XW) P (Az) = —F)(2),

—

Axr = P(Ax)



Diagonal Preconditioning

Optimal scaling Dennis and W. (1993) full rank matrix
A e R™™ m > n, with condition number
w(K) := n~trace (K)/ det(K)'/™, the optimal scaling

minw((AD)(AD)) subject to:D positive and diagonal
solution:d;; = 1/||A.ille,t=1,...,n

explicit expressions for preconditioner
Inexpensive
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EXplicit Preconditioning

diagonal operatorP; evaluate using columns &f(v).
k= (i,5), 1 <i<j <n,strictly upper triangular part

A+ 2XW)(en)ll7 = [[A(er)l|% + [(W(er) X%
+ (A(Eyj), W(Ei;))X) ,

where

M = { va (AT T Ael) i<
(Asel) if i = j.

andxXw ..... Inexpensive - 50% reduction in LSQR iterations
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Pentium 4; MATLAB 6.5; 1 GIG RAM.

crossover heuristic: relative duality gap.1.
Stopping criteria (relative duality gag) e; = 1e — 10.
(But - average accuracy attaingéel— 13, g-quadratic
convergence.)
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density vs: nnz(X) and cpucnt. And, cpucnt normalized with multn by 8.9442

— density vs nnz(X)
X density vs cpucnt |
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Gauss-Newton direction:

Advantages/Disadvantages:
Robust, warm starts are simple, longer steps
exact primal and dual feasibility at each iteration
Can apply CG-type approaches
g-quadratic convergence
scale-invariant on the right

Future:
Need large sparse QR efficient as Cholesky

predictor-corrector
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EDM Completion Problem,EDMC

e given certain fixed elements of a EDM matrix
ethe other elements are unknown (free)
ecomplete this matrix to an EDM

S—{(i,j): A, — —by is known, fixed i < j}, |S| = m,

V2

wo= min f(X) = IX)3
(EDMC) subjectto  A(X)=1b
X =0,

constraintd =7 - £ : S"~! — RISl yields interpolation
conditions

A(X)i; = trace Ej; L(X) = b, k= (ij) € 5,
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Duality/Optimality for EDMC

estrict convexity, coercivitympliescompact level sets

eEDMC attained and no duality gap (actually primal and dual
attainment)

Lagrangian dual

1
*— = ax  min = || X||% +y' (b — A(X)) — trace AX
pr=pt = | max mi 51X+ ( 0.9)
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characterization of optimality

THEOREM Suppose that the feasible set of EDMC s not the
empty set. Then the optimal solution of EDMC is

D = L ([A*(y)]+), wherey is the unique solution of the single
equation

A (A" ()]+) =0,

and B, denotes the projection of the symmetric matbix S
onto the coné>,,_;.
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Proof

optimality conditions after differentiation

X=A(y)+A >0, A*0, dual feasibility
A(X) =10 primal feasibility
AX =0 complementary slackness

This means thatl*(y) = X — A, where bothX > 0, A > 0, and
AX = 0. Therefore the three symmetric matrices
W = A*(y), X, A are mutually diagonalizable. We write

X = PDxP!' A= PD)P!, ie. we conclude that
W = A*(y) = P(Dx — D)) P!, Dx Dy = 0. Therefore
A*(y)]+ = PDx Pl = X.
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Efficient/Explicit Solution if y > 0

large class | ) can be solved in polytime.

COROLLARY The linear operatad is onto and4.A* is
nonsingular. Suppose that= (AA*)"'b € R”". Then

D=L(A(y))

IS the unigue solution of EDMC.

PROOE That.A is onto follows from the definitions.

If y > 0, then the matriXZ(y) > 0 with O diagonal. Therefore,

X = L*(Z(y)) is diagonally dominant with nonnegative diagonal,
l.e. X = 0 by Gersgorin’s disk theorem. This implies thats a
distance matrix and it satisfies the interpolation condgja.e. it
satisfies the optimality conditions in the Theorem.
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Numerics: dim vS dens with
Z£ Of fallures In 100 tests

thoughy = A'b > 0 does  hold in general, we still get
a distance matrio, i.e. A*(y) > 0.
n =10 : 10 : 100; density.1 : .1 : .8.

/ n\density .1 2 3 4 5 6 .7 .8\
10 19 27 29 25 32 27 20 3%
20 6 20 23 22 27 21 28 98
30 S 8 9 9 11 16 17 24
10 2 2 6 5 14 17 20 17
50 2 0 2 8 7 8 15 12
60 1 1 1 1 3 8 15 11
70 2 0 3 1 5 7 6 15
30 1 0 0 4 2 4 9 9
00 1 0 0 1 3 2 5 6

\ 100 0 0 0 0 1 6 5 5)
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