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OUTLINE
• Background on SDP; Notation and Motivation

• Robust, (‘non-interior’) path-following algorithm for SDP
(outline of GN PCG method using LP)

• Application to Nearest Euclidean Distance Matrix Problem

• Numerics (Comparisons with a dual algorithm)
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Notation and Motivation

(SDP)
min f(X)

subject to AX = b

X � 0,

where:

f : Sn → R convex function
Sn n× n real symmetric matrices

X(�) ≻ 0 denotespositive (semi)definite
A : Sn → R

m linear transformation

(
(AX)i = 〈Ai, X〉 = traceAiX, Ai = AT

i , i = 1 . . . n)
)
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Linear Primal-Dual Pair of SDPs
(looks/behaves like Linear Program, LP)

(PSDP)
max 〈C,X〉 = traceCX

subject to AX = b

X � 0

(SDP)
min bT y

subject to A∗y − Z = C

Z � 0

adjoint operator: A∗y =
∑m

i=1 yiAi

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 5



(some of the) APPLICATIONS
• Relaxations ofhard combinatorial problems: e.g. max-cut;

graph partitioning; quadratic assignment problem;
max-clique.

• NLP e.g.: quasi-Newton updates that preserve positive
definiteness; Trust region algorithms for large scale
minimization; Extended SQP techniques for constrained
minimization.

• Partial Hermitianmatrix completion problems and Euclidean
distance matrix completion problems.

• Engineering problemssuch as: Ricatti equations; min-max
eigenvalue problems; matrix norm minimization; eigenvalue
localization.
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SIMILARITIES to LP: (i) Duality
payoff function, playerY to playerX (Lagrangian)

L(X, y) := trace (CX) + yt(b−AX)

Optimal (worst case) strategy for playerX:

p∗ = max
X�0

min
y

L(X, y)

Using thehidden constraint b−AX = 0,
recovers primal problem.
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apply adjoint

L(X, y) = trace (CX) + yt(b−AX)

= bty + trace (C −A∗y) X

adjoint operator,A∗y =
∑

i yiAi

〈A∗y,X〉 = 〈y,AX〉 , ∀X, y

Hidden Constraint: C −A∗y � 0
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exploit Hidden Constraint

p∗ = max
X�0

min
y

L(X, y) ≤ d∗ := min
y

max
X�0

L(X, y)

dual obtained from optimal strategy of competing player, Y.
Hidden Constraint: C −A∗y � 0 yields the dual

(DSDP)
d∗ = min bty

s.t. A∗y � C

for the primal

(PSDP)

p∗ = max traceCX

s.t. AX = b

X � 0
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Characterization of Optimality
primal-dual pairX, y (slackZ � 0)

A∗y − Z = C dual feasibility

AX = b primal feasibility

ZX = 0 complementary slackness

ZX = µI perturbed C.S.,µ > 0

Basis for methods:

• primal simplex (maintain: primal feas. & compl. slack.)

• dual simplex (maintain: dual feas. & compl. slack.)

• interior point (maintain: primal feas. & dual feas.)
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SDP Application: (Direct) Max-Cut
Relaxation
GraphG = (E, V ); |V | = n (nodes);wij weights on edges;

max 1
2

∑
i<j wij(1− xixj), x ∈ {±1}n.

Equatexi = 1 with i in setI andxi = −1 otherwise.
Equivalent problem: homogeneous(±1)-QQP

µ∗ := max q(x) := xtQx = traceQxxT , x ∈ {±1}n.

REPLACEx ∈ {±1}n WITH CONSTRAINTSx2
i = 1 ??!!

LIFTING : X = xxt

Relax the rank-1 condition onX to get linear SDP.

µ∗ ≤ max{trace QX : diag (X) = e,X � 0}
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SDP from general quadratic approx?
(Lagr. Relax.!)

qi(y) :=
1

2
ytQiy + ytbi + ci, y ∈ ℜn

(QQP)

q∗ = min q0(y)

s.t. qi(y) ≤ 0

i = 1, . . . m

Lagrangian: L(y, x) = q0(y) +
∑m

i=1 xiqi(y)

or equivalently
L(y, x) = 1

2yt(Q0 +
∑m

i=1 xiQi)y (quadratic iny)

+yt(b0 +
∑m

i=1 xibi) (linear iny)

+(c0 +
∑m

i=1 xici) (constant iny)
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Weak Duality
follows from definition of dual program and hidden constraints:

d∗ = max
x≥0

min
y

L(y, x) ≤ q∗ = min
y

max
x≥0

L(y, x).

Now homogenize; multiply linear term by new variabley0

y0y
t(b0 +

m∑

i=1

xibi), y2
0 = 1.

and add new constraint to Lagrangian (Lagrange multipliert)

t(y2
0 − 1)
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Homogenization

d∗ = max
x≥0

min
y

L(y, x)

= max
x≥0

min
y2
0=1

1
2yt(Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0y
t(b0 +

∑m
i=1 xibi)

+(c0 +
∑m

i=1 xici) − t

= max
x≥0,t

min
y

1
2yt(Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0y
t(b0 +

∑m
i=1 xibi)

+(c0 +
∑m

i=1 xici) − t

hidden semidefinite constraint yields SDP
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Apply Hidden SDP Constraint
(Hessian psd)

B :=

(
0 bt

0

b0 Q0

)
andA : ℜm+1 → Sn+1

A

(
t

x

)
:= −

[
t

∑m
i=1 xib

t
i∑m

i=1 xibi
∑m

i=1 xiQi

]

Lagrangian psd: B − A

(
t

x

)
� 0.

NOTE There is NO hidden constraint on theQi if all qi are
convex.Better algorithms exist for the convex case, e.g. proximal
methods, using quadratic cones, ...
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Dual of Dual→ SDP Relaxation
dual program is equivalent to SDP (withc0 = 0)

(D)

d∗ = sup −t +
∑m

i=1 xici

s.t. A

(
t

x

)
� B

x ∈ ℜm, t ∈ ℜ

As in LP, dual of dual is obtained from optimal strategy of the
competing player:

(DD)

d∗ = inf traceBU

s.t. A∗U =

(
−1

c

)

U � 0.
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Tractable Relaxations
In some sense, Lagrangian relaxation isbest tractable
relaxation.
There arehigher order relaxations:
e.g. fromX = xxT from max-cut relaxation (fromx2

j = 1)

2nd LIFTING : xix
2
jxk = xixk, Y =

(
1

svec X

)
( 1 svecX )

Public domain software: e.g.NEOS
URL: www-neos.mcs.anl.gov
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(Perturbed) Optimality Conditions
For barrier parameter µ > 0:

Fµ(X, y, Z) :=




A∗y − Z − C
AX − b
ZX − µI



 = 0




dual feasibility

primal feasibility
pert.compl. slack.





For SDP:
Fµ : Sn ×ℜm × Sn → Sn ×ℜm ×Mn

i.e. overdetermined nonlinear system
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(Non) Interior Path-Following

Illustration/Motivation on LP Case

(LP)

p∗ := min cTx (or 〈c, x〉)
s.t. Ax = b

x ≥ 0 (or x � 0)

(DLP)

d∗ := max bT y

s.t. AT y + z = c

z ≥ 0 (or z � 0)

Assume:A ∈ ℜm×n full rank (onto); LP, DLP strictly feasible
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dual log-barrier problem;
parameter µ > 0

d∗µ := max bT y + µ
∑n

j=1 log zj (+µ log det(z))

s.t. AT y + z = c (AT ∼= A∗)

z > 0 (z ≻ 0).

stationary point of the Lagrangian / optimality conditions

Fµ(x, y, z) =




AT y + z − c

Ax− b

X − µZ−1


 = 0,

x, z > 0, (≻ 0)

X = Diag (x)

Z = Diag (z)

central path:= set of solutions(xµ, yµ, zµ), µ > 0
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Jacobian Ill-conditioning

As µ→ 0, JacobianF ′
µ(x, y, z) ill-conditioned near central path

Cure/Fix: Make nonlinear equationsless nonlinear, i.e.
preconditioningfor Newton type methods;

premultiply by block-diag matrix with blocks(I, I, Z):

Fµ(x, y, z)←




I 0 0
0 I 0
0 0 Z



Fµ(x, y, z) =




AT y + z − c

Ax− b

ZX − µI




=:




Rd

rp

RZX




recovers modern primal-dual optimality paradigm
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Exploited Special Structure
linearization for the Newton direction

∆s =




∆x
∆y
∆z





F ′
µ(x, y, z)∆s =




0 AT I
A 0 0
Z 0 X



∆s = −Fµ(x, y, z).
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Overdeterminedsystem in SDP case

Sn ×ℜm × Sn → Sn ×ℜm ×Mn

apply symmetrization;undoes preconditioning



I 0 0
0 I 0
0 0 S








0 AT I
A 0 0
Z 0 X





e.g. last equation after symmetrization:
ZX + XZ − 2µI = 0 (AHO search direction)
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Reduction/Block-Elimination
→ Normal Equations
Step 1 (Eliminate∆z from row 3):




I 0 0
0 I 0
−X 0 I








0 AT I
A 0 0
Z 0 X



 =




0 AT I

A 0 0

Z −XAT 0


 .

Define:

PZ :=




I 0 0
0 I 0
−X 0 I



 , K :=




0 AT I

A 0 0

Z −XAT 0


 .
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with right-hand side

−




I 0 0
0 I 0
−X 0 I








Rd

rp

RZX − µe


 =




−Rd

−rp

XRd − RZX



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Step 2: Eliminate∆x from row 2
(and scale row 3)

Fn := PnK :=




I 0 0
0 I −AZ−1

0 0 Z−1








0 AT I

A 0 0

Z −XAT 0




=




0 AT In

0 AZ−1XAT 0

In −Z−1XAT 0




AZ−1XAT can have:
• uniformly bounded condition number, e.g. Güler et al 1993
• structured singularity, e.g. S. Wright 95,97/ M. Wright 1999
But cond(Fn)→∞
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The right-hand side becomes

−PnPZ




Rd

rp

RZX


 =




−Rd

−rp + A(x− Z−1XRd − µZ−1e)

Z−1XRd − x + µZ−1e



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Ill-conditioning

Proposition The condition number ofF T
n Fn diverges to infinity

if x(µ)i/z(µ)i diverges to infinity, for somei, asµ converges to 0.
The condition number of(F ′

µ)TF ′
µ is uniformly bounded if there

exists a unique primal-dual solution.
PROOF: Note that

F T
n Fn =




In −Z−1XAT 0

−AXZ−1 (AAT + (AZ−1XAT )2 + AZ−2X2AT ) A

0 AT In



 .

By interlacing of eigenvalues, ...

Corollary The condition number ofFn is at leastO(1/µ).
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EXAMPLE

A = ( 1 1 ) , c =

(
−1
1

)
, b = 1,

x∗ =

(
1
0

)
, y∗ = −1, z∗ =

(
0
2

)
;

initial points:

x =

(
9.183012e− 001
1.356397e− 008

)
, z =

(
2.193642e− 008
1.836603e + 000

)
,

y = −1.163398e + 000.

residuals and duality gap:
‖rb‖ = 0.081699, ‖Rd‖ = 0.36537, µ = xT z/n = 2.2528e− 008
5 decimals rounding before/after arithmetic
centering withσ = .1
BUT: residuals are NOT orderµ.
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search directions found

using: full matrix F ′
µ and backsolve matrixFn




∆x
∆y
∆z



 =




8.17000e− 02
−1.35440e− 08
1.63400e− 01
−2.14340e− 08
1.63400e− 01


 ;




−6.06210e + 01
−1.35440e− 08
1.63400e− 01
0.00000e + 00
1.63400e− 01




error in∆y is small;
but error after backsubstitution for(∆x)1 is large.

(
AZ−1XAT

−Z−1XAT

)
=




4.18630e + 07
−4.18630e + 07
−7.38540e− 09




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Alternate Second Step;
Stable Reduction
Assuming! A = [Im E].
Partition diagonal matrixZ,X using vectors

z =

(
zm

zv

)
, x =

(
xm

xv

)
, XAT =

(
Xm

XvE
T

)

Fs : = PsK =




In 0 0 0
0 Im 0 0
0 −Zm Im 0
0 0 0 Iv







0 0 AT In

Im E 0 0
Zm 0 −Xm 0
0 Zv −XvE

T 0




=




0 0 AT In

Im E 0 0
0 −ZmE −Xm 0
0 Zv −XvE

T 0


 .
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The right-hand side becomes

−PsPZ




AT y + z − c

Ax− b

ZXe− µe


 = −Ps




Rd

rp

−XRd + ZXe− µe




=




−Rd

−rp

−Zmrp −Xm(Rd)m + ZmXme− µe

−Xv(Rd)v + ZvXve− µe



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Summary: Path-following;

NOT Interior-point
• staying interior is a heuristic for staying within a neighbourhood
of the central path
• staying interior is required for numerical accuracy when solving
thecurrent ill-conditioned reduced systems
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(Nearest) Euclidean Distance Matrix
Completion using SDP
Given:
pre-distance matrix A ∈ Sn (nonnegative with zero diagonal)
weight matrix H ∈ Sn :

(NEDM) µ∗ = min
1

2
‖H ◦ (A−D)‖2F subject to:D ∈ EDM

EDM = {D = (dij) ∈ Sn : dij = ‖xi − xj‖
2, for somexi ∈ ℜk}, k is embedding dimension

◦ denotesHadamard (elementwise) matrix product
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Applications
e.g. molecular conformation problems in chemistry;
multidimensional scaling and multivariate analysis problems in
statistics; genetics, geography, ....
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Mixed-Cone Formulation
direct approach using a mixed SDP and second-order (or Lorentz)
cone problem:

min α

s.t. Y = H ◦ (L(X)− A), ‖Y ‖F ≤ α

X ∈ Sn−1 , Y ∈ Sn , X ∈ SDP

whereX ∈ SDP ⇒ L(X) ∈ EDM
(Public domain software packages are available, but problem size
becomes large)
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Connection betweenSDPand EDM

B = [x1 x2 . . . xn], k × n

Dij = ‖xi − xj‖2 = −2xT
i xj + ‖xi‖2 + ‖xj‖2

D = −2BT B + e
(
diag (BTB)

)T
+
(
diag (BTB)

)
eT

With X = BTB � 0
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Operator Notation:
us2vec , us2Mat , svec , sMat

x = svec (X) ∈ R
(n+1

2 ), X = sMat (x)

√
2 times vector (columnwise) from upper-triang ofX.(n+1
2

)
= n(n + 1)/2;

√
2 guarantees isometry.

sMat := svec−1 mapping intoSn

adjoint transformationsMat ∗ = svec :

〈sMat (v), S〉 = trace sMat (v)S

= vT svec (S) = 〈v, svec (S)〉
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Characterization of EDM using SDP
D is EDM (⊂ Sn )

iff

D = L(X) :=

(
0 diag (X)T

diag (X) diag (X)eT + ediag (X)T − 2X

)
,

for someX � 0, X ∈ Sn−1

(e is vector of ones)

L : Sn−1 → Sn , L(Sn−1
+ ) = EDM
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adjoint/generalized inverse
with partition:

D =

[
α dT

d D̄

]
,

whereα ∈ R

L∗(D) = 2
(
Diag (d) + Diag (D̄e)− D̄

)

L†(D) =
1

2

(
deT + edT − D̄

)

L∗,L† : Sn → Sn−1 , L†(EDM) = Sn−1
+
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Duality and Optimality Conditions

(usingX = sMat (x) + I) an equivalent problem is:

µ∗ := min
1

2
‖H ◦ (A− L(X))‖2F subject to X � 0

strong (Lagrangian) duality holds (Slater’s holds for primal and
holds for dual if the graph is complete)

µ∗ = ν∗ := max
Λ�0

min
X

1

2
‖H ◦ (A− L(X))‖2F − trace ΛX
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Wolfe dual and optimality conditions
With

C := L∗(H(2) ◦ A),

optimality conditions are:

X := sMat (x) � 0 (primal feasibility)

Λ := L∗
{

H(2) ◦ (L(X))
}
− C, Λ � 0 (dual feasibility)

ΛX := 0 (compl. slack.)

equivalent dual problem:

max 1
2‖H ◦ (A− L(X))‖2F − traceΛX

subject to Λ = L∗
{

H(2) ◦ (L(X))
}
− C

Λ � 0.

(0.1)
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Bilinear System
eliminateΛ
exact primal-dual feasibility during iterations
full rank Jacobian at optimality.
single bilinear (perturbed) equation in x;

Fµ(x) : R
(n

2) →Mn−1

Fµ(x) :=
[
L∗
{

H(2) ◦ (L(X))
}
− C

]
X − µI = 0

typical SDP - overdetermined system of bilinear equations
current approach is to symmetrize - which results in
ill-conditioning! from rank deficient Jacobian at optimality.
BUT, here, no symmetrization used;
solve using (an inexact) Gauss-Newton method - with PCG
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Linearization

LetW(x) := L∗
{

H(2) ◦ (L(x))
}

Linearization for search direction∆x at currentx = svec (X):

F ′
µ(x)∆x = [W(x)− C] ∆x + [W(∆x)]X

This is a linear, full rank, overdetermined system.
Our search direction∆x is its (approx.) least squares solution.
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Algorithm: p-d i-e-p framework
• Initialization:

•• Input data: a pre-distancen× n matrixA
•• Positive tolerances:

ǫ1 (stopping),ǫ2 (lss accuracy),ǫ3 (crossover),

•• Find initial strictly feasible points: both
X0,Λ0 := (W(X)− C) ≻ 0; µ > 0
•• Set initial parameters:

gap = traceΛ0X0; µ = gap/n; objval = f(X0); k = 0.
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Algorithm continued 1

• while min{ gap
objval+1 , objval} > ǫ1

•• solve lss for search direction(accuracy
ǫ2 min{µ, 1})

F ′
σµ(xk)

(
∆xk

)
= −Fσµ(xk),

whereσk centering,µk = 1
ntrace (W(Xk)− C)Xk

Xk+1 = Xk + αk∆Xk, αk > 0,

so that bothXk+1, (W(Xk+1)− C) � 0
(αk = 1 after the crossover.)
•• update

k ← k + 1 and then

σ

(
setσ = 0 if min{ gap

, objval} < ǫ3

)
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Algorithm continued 2

• while min{ gap
objval+1 , objval} > ǫ1

•• solve lss for search direction
. . .
•• update

k ← k + 1 and then

σk

(
setσk = 0 if min{ gap

objval + 1
, objval} < ǫ3

)

• end (while).
• Conclusion: D = L(X) ∈ EDM is approx. toA
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Crossover
After thecrossover, centeringσ = 0 and steplengthα = 1, we get
q-quadratic convergence; allows forwarm starts.
Long stepscan be takenbeyond the positivity boundary. (tests
show improved convergence rates)
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Preconditioning

(Λ + XW) P−1(∆̂x) = −Fµ(x),

where
∆̂x = P (∆x)
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Diagonal Preconditioning
Optimal scaling Dennis and W. (1993) full rank matrix
A ∈ R

m×n, m ≥ n, with condition number
ω(K) := n−1trace (K)/ det(K)1/n, the optimal scaling

minω((AD)T (AD)) subject to:D positive and diagonal

solution:dii = 1/‖A:i‖2, i = 1, . . . , n
explicit expressions for preconditioner
inexpensive
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Explicit Preconditioning

diagonal operatorP ; evaluate using columns ofF ′
µ(v).

k ∼= (i, j), 1 ≤ i < j ≤ n, strictly upper triangular part

‖(Λ + XW)(ek)‖2F = ‖Λ(ek)‖2F + ‖(W(ek))X‖2F
+ 〈Λ(Eij), (W(Eij))X〉 ,

where

Λ(ek) =

{
1√
2

(
Λ:ie

T
j + Λ:je

T
i

)
, if i < j

(
Λ:ie

T
i

)
, if i = j.

andXW ..... inexpensive - 50% reduction in LSQR iterations
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Numerical Tests
Pentium 4; MATLAB 6.5; 1 GIG RAM.
crossover heuristic: relative duality gap< .1.
Stopping criteria (relative duality gap)< ǫ1 = 1e− 10.
(But - average accuracy attained1e− 13, q-quadratic
convergence.)
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density .0005:.001:.003, CPU times
and nnz(Λ), n=200

0.5 1 1.5 2 2.5 3

x 10
−3

100

200

300

400

500

600

700
density vs: nnz(X) and cpucnt. And, cpucnt normalized with multn by 8.9442

density vs nnz(X)
density vs cpucnt
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Conclusion
Gauss-Newton direction:

Advantages/Disadvantages:
Robust, warm starts are simple, longer steps
exact primal and dual feasibility at each iteration
Can apply CG-type approaches
q-quadratic convergence
scale-invariant on the right

Future:
Need large sparse QR efficient as Cholesky
predictor-corrector
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EDM Completion Problem,EDMC

• given certain fixed elements of a EDM matrixA
•the other elements are unknown (free)
•complete this matrix to an EDM

S = {(i, j) : Ai,j =
1√
2
bk is known, fixed, i < j}, |S| = m,

(EDMC )

µ∗ := min f(X) := 1
2‖X‖2F

subject to A(X) = b

X � 0,

constraintA = I · L : Sn−1 → R
|S| yields interpolation

conditions

A(X)ij = traceEijL(X) = bk, ∀k ∼= (ij) ∈ S,
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Duality/Optimality for EDMC
•strict convexity, coercivityimpliescompact level sets
•EDMC attained and no duality gap (actually primal and dual
attainment)
Lagrangian dual

µ∗ = ν∗ := max
Λ�0,y∈R|S|

min
X

1

2
‖X‖2F + yT (b−A(X))− trace ΛX
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characterization of optimality
THEOREMSuppose that the feasible set of EDMC is not the
empty set. Then the optimal solution of EDMC is
D = L ([A∗(y)]+), wherey is the unique solution of the single
equation

A ([A∗(y)]+) = b,

andB+ denotes the projection of the symmetric matrixB ∈ Sn−1

onto the conePn−1.
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Proof
optimality conditions after differentiation

X = A∗(y) + Λ � 0, Λ � 0, dual feasibility
A(X) = b primal feasibility

ΛX = 0 complementary slackness

This means thatA∗(y) = X − Λ, where bothX � 0,Λ � 0, and
ΛX = 0. Therefore the three symmetric matrices
W = A∗(y), X,Λ are mutually diagonalizable. We write
X = PDXPT , Λ = PDΛPT , i.e. we conclude that
W = A∗(y) = P (DX −DΛ) PT , DXDΛ = 0. Therefore
[A∗(y)]+ = PDXPT = X.
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Efficient/Explicit Solution if y ≥ 0

large class (generic?) can be solved in polytime.

COROLLARY The linear operatorA is onto andAA∗ is
nonsingular. Suppose thaty = (AA∗)−1b ∈ R

m
+ . Then

D = L (A∗(y))

is the unique solution of EDMC .
PROOF: ThatA is onto follows from the definitions.
If y ≥ 0, then the matrixI(y) ≥ 0 with 0 diagonal. Therefore,
X = L∗(I(y)) is diagonally dominant with nonnegative diagonal,
i.e. X � 0 by Gersgorin’s disk theorem. This implies thatD is a
distance matrix and it satisfies the interpolation conditions, i.e. it
satisfies the optimality conditions in the Theorem.
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Numerics: dim vs dens with
# of failures in 100 tests

thoughy = A†b ≥ 0 doesnot hold in general, we still get
a distance matrixD, i.e.A∗(y) � 0.
n = 10 : 10 : 100; density.1 : .1 : .8.




n\density .1 .2 .3 .4 .5 .6 .7 .8
10 19 27 29 25 32 27 20 38
20 6 20 23 22 27 21 28 28
30 8 8 9 9 11 16 17 24
40 2 2 6 5 14 17 20 17
50 2 0 2 8 7 8 15 12
60 1 1 1 1 3 8 15 11
70 2 0 3 1 5 7 6 15
80 1 0 0 4 2 4 9 9
90 1 0 0 1 3 2 5 6
100 0 0 0 0 1 6 5 5




.
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