
Robust Algorithms for Large Sparse
Semidefinite Programming (SDP)

with Applications to the Nearest Euclidean Distance Matrix Problem

Henry Wolkowicz
hwolkowicz@uwaterloo.ca

Department of Combinatorics and Optimization

University of Waterloo

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 1

Fields Institute, 2004
Fields Industrial Optimization Seminar - Inaugural Meetin g

Robust Algorithms
for

Large Sparse Semidefinite Programming (SDP)

Tuesday, November 2, 2004.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 2

OUTLINE
• Background on SDP; Notation and Motivation

• Robust, (‘non-interior’) path-following algorithm for SDP
(outline of GN PCG method using LP)

• Application to Nearest Euclidean Distance Matrix Problem

• Numerics (Comparisons with a dual algorithm)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 3

Notation and Motivation

(SDP)
min f(X)

subject to AX = b

X � 0,

where:

f : Sn → R convex function
Sn n× n real symmetric matrices

X(�) ≻ 0 denotespositive (semi)definite
A : Sn → R

m linear transformation

(
(AX)i = 〈Ai, X〉 = traceAiX, Ai = AT

i , i = 1 . . . n)
)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 4

Linear Primal-Dual Pair of SDPs
(looks/behaves like Linear Program, LP)

(PSDP)
max 〈C,X〉 = traceCX

subject to AX = b

X � 0

(SDP)
min bT y

subject to A∗y − Z = C

Z � 0

adjoint operator: A∗y =
∑m

i=1 yiAi

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 5

(some of the) APPLICATIONS
• Relaxations ofhard combinatorial problems: e.g. max-cut;

graph partitioning; quadratic assignment problem;
max-clique.

• NLP e.g.: quasi-Newton updates that preserve positive
definiteness; Trust region algorithms for large scale
minimization; Extended SQP techniques for constrained
minimization.

• Partial Hermitianmatrix completion problems and Euclidean
distance matrix completion problems.

• Engineering problemssuch as: Ricatti equations; min-max
eigenvalue problems; matrix norm minimization; eigenvalue
localization.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 6

SIMILARITIES to LP: (i) Duality
payoff function, playerY to playerX (Lagrangian)

L(X, y) := trace (CX) + yt(b−AX)

Optimal (worst case) strategy for playerX:

p∗ = max
X�0

min
y

L(X, y)

Using thehidden constraint b−AX = 0,
recovers primal problem.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 7

apply adjoint

L(X, y) = trace (CX) + yt(b−AX)

= bty + trace (C −A∗y) X

adjoint operator,A∗y =
∑

i yiAi

〈A∗y,X〉 = 〈y,AX〉 , ∀X, y

Hidden Constraint: C −A∗y � 0

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 8

exploit Hidden Constraint

p∗ = max
X�0

min
y

L(X, y) ≤ d∗ := min
y

max
X�0

L(X, y)

dual obtained from optimal strategy of competing player, Y.
Hidden Constraint: C −A∗y � 0 yields the dual

(DSDP)
d∗ = min bty

s.t. A∗y � C

for the primal

(PSDP)

p∗ = max traceCX

s.t. AX = b

X � 0

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 9

Characterization of Optimality
primal-dual pairX, y (slackZ � 0)

A∗y − Z = C dual feasibility

AX = b primal feasibility

ZX = 0 complementary slackness

ZX = µI perturbed C.S.,µ > 0

Basis for methods:

• primal simplex (maintain: primal feas. & compl. slack.)

• dual simplex (maintain: dual feas. & compl. slack.)

• interior point (maintain: primal feas. & dual feas.)
Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 10

SDP Application: (Direct) Max-Cut
Relaxation
GraphG = (E, V); |V | = n (nodes);wij weights on edges;

max 1
2

∑
i<j wij(1− xixj), x ∈ {±1}n.

Equatexi = 1 with i in setI andxi = −1 otherwise.
Equivalent problem: homogeneous(±1)-QQP

µ∗ := max q(x) := xtQx = traceQxxT , x ∈ {±1}n.

REPLACEx ∈ {±1}n WITH CONSTRAINTSx2
i = 1 ??!!

LIFTING : X = xxt

Relax the rank-1 condition onX to get linear SDP.

µ∗ ≤ max{trace QX : diag (X) = e,X � 0}
Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 11

SDP from general quadratic approx?
(Lagr. Relax.!)

qi(y) :=
1

2
ytQiy + ytbi + ci, y ∈ ℜn

(QQP)

q∗ = min q0(y)

s.t. qi(y) ≤ 0

i = 1, . . . m

Lagrangian: L(y, x) = q0(y) +
∑m

i=1 xiqi(y)

or equivalently
L(y, x) = 1

2yt(Q0 +
∑m

i=1 xiQi)y (quadratic iny)

+yt(b0 +
∑m

i=1 xibi) (linear iny)

+(c0 +
∑m

i=1 xici) (constant iny)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 12

Weak Duality
follows from definition of dual program and hidden constraints:

d∗ = max
x≥0

min
y

L(y, x) ≤ q∗ = min
y

max
x≥0

L(y, x).

Now homogenize; multiply linear term by new variabley0

y0y
t(b0 +

m∑

i=1

xibi), y2
0 = 1.

and add new constraint to Lagrangian (Lagrange multipliert)

t(y2
0 − 1)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 13

Homogenization

d∗ = max
x≥0

min
y

L(y, x)

= max
x≥0

min
y2
0=1

1
2yt(Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0y
t(b0 +

∑m
i=1 xibi)

+(c0 +
∑m

i=1 xici) − t

= max
x≥0,t

min
y

1
2yt(Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0y
t(b0 +

∑m
i=1 xibi)

+(c0 +
∑m

i=1 xici) − t

hidden semidefinite constraint yields SDP

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 14

Apply Hidden SDP Constraint
(Hessian psd)

B :=

(
0 bt

0

b0 Q0

)
andA : ℜm+1 → Sn+1

A

(
t

x

)
:= −

[
t

∑m
i=1 xib

t
i∑m

i=1 xibi
∑m

i=1 xiQi

]

Lagrangian psd: B − A

(
t

x

)
� 0.

NOTE There is NO hidden constraint on theQi if all qi are
convex.Better algorithms exist for the convex case, e.g. proximal
methods, using quadratic cones, ...

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 15

Dual of Dual→ SDP Relaxation
dual program is equivalent to SDP (withc0 = 0)

(D)

d∗ = sup −t +
∑m

i=1 xici

s.t. A

(
t

x

)
� B

x ∈ ℜm, t ∈ ℜ

As in LP, dual of dual is obtained from optimal strategy of the
competing player:

(DD)

d∗ = inf traceBU

s.t. A∗U =

(
−1

c

)

U � 0.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 16

Tractable Relaxations
In some sense, Lagrangian relaxation isbest tractable
relaxation.
There arehigher order relaxations:
e.g. fromX = xxT from max-cut relaxation (fromx2

j = 1)

2nd LIFTING : xix
2
jxk = xixk, Y =

(
1

svec X

)
(1 svecX)

Public domain software: e.g.NEOS
URL: www-neos.mcs.anl.gov

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 17

(Perturbed) Optimality Conditions
For barrier parameter µ > 0:

Fµ(X, y, Z) :=

A∗y − Z − C
AX − b
ZX − µI

 = 0

dual feasibility

primal feasibility
pert.compl. slack.

For SDP:
Fµ : Sn ×ℜm × Sn → Sn ×ℜm ×Mn

i.e. overdetermined nonlinear system

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 18

(Non) Interior Path-Following

Illustration/Motivation on LP Case

(LP)

p∗ := min cTx (or 〈c, x〉)
s.t. Ax = b

x ≥ 0 (or x � 0)

(DLP)

d∗ := max bT y

s.t. AT y + z = c

z ≥ 0 (or z � 0)

Assume:A ∈ ℜm×n full rank (onto); LP, DLP strictly feasible

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 19

dual log-barrier problem;
parameter µ > 0

d∗µ := max bT y + µ
∑n

j=1 log zj (+µ log det(z))

s.t. AT y + z = c (AT ∼= A∗)

z > 0 (z ≻ 0).

stationary point of the Lagrangian / optimality conditions

Fµ(x, y, z) =

AT y + z − c

Ax− b

X − µZ−1

 = 0,

x, z > 0, (≻ 0)

X = Diag (x)

Z = Diag (z)

central path:= set of solutions(xµ, yµ, zµ), µ > 0

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 20

Jacobian Ill-conditioning

As µ→ 0, JacobianF ′
µ(x, y, z) ill-conditioned near central path

Cure/Fix: Make nonlinear equationsless nonlinear, i.e.
preconditioningfor Newton type methods;

premultiply by block-diag matrix with blocks(I, I, Z):

Fµ(x, y, z)←

I 0 0
0 I 0
0 0 Z

Fµ(x, y, z) =

AT y + z − c

Ax− b

ZX − µI

=:

Rd

rp

RZX

recovers modern primal-dual optimality paradigm
Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 21

Exploited Special Structure
linearization for the Newton direction

∆s =

∆x
∆y
∆z

F ′
µ(x, y, z)∆s =

0 AT I
A 0 0
Z 0 X

∆s = −Fµ(x, y, z).

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 22

Overdeterminedsystem in SDP case

Sn ×ℜm × Sn → Sn ×ℜm ×Mn

apply symmetrization;undoes preconditioning

I 0 0
0 I 0
0 0 S

0 AT I
A 0 0
Z 0 X

e.g. last equation after symmetrization:
ZX + XZ − 2µI = 0 (AHO search direction)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 23

Reduction/Block-Elimination
→ Normal Equations
Step 1 (Eliminate∆z from row 3):

I 0 0
0 I 0
−X 0 I

0 AT I
A 0 0
Z 0 X

 =

0 AT I

A 0 0

Z −XAT 0

 .

Define:

PZ :=

I 0 0
0 I 0
−X 0 I

 , K :=

0 AT I

A 0 0

Z −XAT 0

 .

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 24

with right-hand side

−

I 0 0
0 I 0
−X 0 I

Rd

rp

RZX − µe

 =

−Rd

−rp

XRd − RZX

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 25

Step 2: Eliminate∆x from row 2
(and scale row 3)

Fn := PnK :=

I 0 0
0 I −AZ−1

0 0 Z−1

0 AT I

A 0 0

Z −XAT 0

=

0 AT In

0 AZ−1XAT 0

In −Z−1XAT 0

AZ−1XAT can have:
• uniformly bounded condition number, e.g. Güler et al 1993
• structured singularity, e.g. S. Wright 95,97/ M. Wright 1999
But cond(Fn)→∞

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 26

The right-hand side becomes

−PnPZ

Rd

rp

RZX

 =

−Rd

−rp + A(x− Z−1XRd − µZ−1e)

Z−1XRd − x + µZ−1e

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 27

Ill-conditioning

Proposition The condition number ofF T
n Fn diverges to infinity

if x(µ)i/z(µ)i diverges to infinity, for somei, asµ converges to 0.
The condition number of(F ′

µ)TF ′
µ is uniformly bounded if there

exists a unique primal-dual solution.
PROOF: Note that

F T
n Fn =

In −Z−1XAT 0

−AXZ−1 (AAT + (AZ−1XAT)2 + AZ−2X2AT) A

0 AT In

 .

By interlacing of eigenvalues, ...

Corollary The condition number ofFn is at leastO(1/µ).

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 28

EXAMPLE

A = (1 1) , c =

(
−1
1

)
, b = 1,

x∗ =

(
1
0

)
, y∗ = −1, z∗ =

(
0
2

)
;

initial points:

x =

(
9.183012e− 001
1.356397e− 008

)
, z =

(
2.193642e− 008
1.836603e + 000

)
,

y = −1.163398e + 000.

residuals and duality gap:
‖rb‖ = 0.081699, ‖Rd‖ = 0.36537, µ = xT z/n = 2.2528e− 008
5 decimals rounding before/after arithmetic
centering withσ = .1
BUT: residuals are NOT orderµ.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 29

search directions found

using: full matrix F ′
µ and backsolve matrixFn

∆x
∆y
∆z

 =

8.17000e− 02
−1.35440e− 08
1.63400e− 01
−2.14340e− 08
1.63400e− 01

 ;

−6.06210e + 01
−1.35440e− 08
1.63400e− 01
0.00000e + 00
1.63400e− 01

error in∆y is small;
but error after backsubstitution for(∆x)1 is large.

(
AZ−1XAT

−Z−1XAT

)
=

4.18630e + 07
−4.18630e + 07
−7.38540e− 09

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 30

Alternate Second Step;
Stable Reduction
Assuming! A = [Im E].
Partition diagonal matrixZ,X using vectors

z =

(
zm

zv

)
, x =

(
xm

xv

)
, XAT =

(
Xm

XvE
T

)

Fs : = PsK =

In 0 0 0
0 Im 0 0
0 −Zm Im 0
0 0 0 Iv

0 0 AT In

Im E 0 0
Zm 0 −Xm 0
0 Zv −XvE

T 0

=

0 0 AT In

Im E 0 0
0 −ZmE −Xm 0
0 Zv −XvE

T 0

 .

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 31

The right-hand side becomes

−PsPZ

AT y + z − c

Ax− b

ZXe− µe

 = −Ps

Rd

rp

−XRd + ZXe− µe

=

−Rd

−rp

−Zmrp −Xm(Rd)m + ZmXme− µe

−Xv(Rd)v + ZvXve− µe

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 32

Summary: Path-following;

NOT Interior-point
• staying interior is a heuristic for staying within a neighbourhood
of the central path
• staying interior is required for numerical accuracy when solving
thecurrent ill-conditioned reduced systems

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 33

(Nearest) Euclidean Distance Matrix
Completion using SDP
Given:
pre-distance matrix A ∈ Sn (nonnegative with zero diagonal)
weight matrix H ∈ Sn :

(NEDM) µ∗ = min
1

2
‖H ◦ (A−D)‖2F subject to:D ∈ EDM

EDM = {D = (dij) ∈ Sn : dij = ‖xi − xj‖
2, for somexi ∈ ℜk}, k is embedding dimension

◦ denotesHadamard (elementwise) matrix product

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 34

Applications
e.g. molecular conformation problems in chemistry;
multidimensional scaling and multivariate analysis problems in
statistics; genetics, geography,

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 35

Mixed-Cone Formulation
direct approach using a mixed SDP and second-order (or Lorentz)
cone problem:

min α

s.t. Y = H ◦ (L(X)− A), ‖Y ‖F ≤ α

X ∈ Sn−1 , Y ∈ Sn , X ∈ SDP

whereX ∈ SDP ⇒ L(X) ∈ EDM
(Public domain software packages are available, but problem size
becomes large)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 36

Connection betweenSDPand EDM

B = [x1 x2 . . . xn], k × n

Dij = ‖xi − xj‖2 = −2xT
i xj + ‖xi‖2 + ‖xj‖2

D = −2BT B + e
(
diag (BTB)

)T
+
(
diag (BTB)

)
eT

With X = BTB � 0

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 37

Operator Notation:
us2vec , us2Mat , svec , sMat

x = svec (X) ∈ R
(n+1

2), X = sMat (x)

√
2 times vector (columnwise) from upper-triang ofX.(n+1
2

)
= n(n + 1)/2;

√
2 guarantees isometry.

sMat := svec−1 mapping intoSn

adjoint transformationsMat ∗ = svec :

〈sMat (v), S〉 = trace sMat (v)S

= vT svec (S) = 〈v, svec (S)〉

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 38

Characterization of EDM using SDP
D is EDM (⊂ Sn)

iff

D = L(X) :=

(
0 diag (X)T

diag (X) diag (X)eT + ediag (X)T − 2X

)
,

for someX � 0, X ∈ Sn−1

(e is vector of ones)

L : Sn−1 → Sn , L(Sn−1
+) = EDM

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 39

adjoint/generalized inverse
with partition:

D =

[
α dT

d D̄

]
,

whereα ∈ R

L∗(D) = 2
(
Diag (d) + Diag (D̄e)− D̄

)

L†(D) =
1

2

(
deT + edT − D̄

)

L∗,L† : Sn → Sn−1 , L†(EDM) = Sn−1
+

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 40

Duality and Optimality Conditions

(usingX = sMat (x) + I) an equivalent problem is:

µ∗ := min
1

2
‖H ◦ (A− L(X))‖2F subject to X � 0

strong (Lagrangian) duality holds (Slater’s holds for primal and
holds for dual if the graph is complete)

µ∗ = ν∗ := max
Λ�0

min
X

1

2
‖H ◦ (A− L(X))‖2F − trace ΛX

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 41

Wolfe dual and optimality conditions
With

C := L∗(H(2) ◦ A),

optimality conditions are:

X := sMat (x) � 0 (primal feasibility)

Λ := L∗
{

H(2) ◦ (L(X))
}
− C, Λ � 0 (dual feasibility)

ΛX := 0 (compl. slack.)

equivalent dual problem:

max 1
2‖H ◦ (A− L(X))‖2F − traceΛX

subject to Λ = L∗
{

H(2) ◦ (L(X))
}
− C

Λ � 0.

(0.1)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 42

Bilinear System
eliminateΛ
exact primal-dual feasibility during iterations
full rank Jacobian at optimality.
single bilinear (perturbed) equation in x;

Fµ(x) : R
(n

2) →Mn−1

Fµ(x) :=
[
L∗
{

H(2) ◦ (L(X))
}
− C

]
X − µI = 0

typical SDP - overdetermined system of bilinear equations
current approach is to symmetrize - which results in
ill-conditioning! from rank deficient Jacobian at optimality.
BUT, here, no symmetrization used;
solve using (an inexact) Gauss-Newton method - with PCG

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 43

Linearization

LetW(x) := L∗
{

H(2) ◦ (L(x))
}

Linearization for search direction∆x at currentx = svec (X):

F ′
µ(x)∆x = [W(x)− C] ∆x + [W(∆x)]X

This is a linear, full rank, overdetermined system.
Our search direction∆x is its (approx.) least squares solution.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 44

Algorithm: p-d i-e-p framework
• Initialization:

•• Input data: a pre-distancen× n matrixA
•• Positive tolerances:

ǫ1 (stopping),ǫ2 (lss accuracy),ǫ3 (crossover),

•• Find initial strictly feasible points: both
X0,Λ0 := (W(X)− C) ≻ 0; µ > 0
•• Set initial parameters:

gap = traceΛ0X0; µ = gap/n; objval = f(X0); k = 0.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 45

Algorithm continued 1

• while min{ gap
objval+1 , objval} > ǫ1

•• solve lss for search direction(accuracy
ǫ2 min{µ, 1})

F ′
σµ(xk)

(
∆xk

)
= −Fσµ(xk),

whereσk centering,µk = 1
ntrace (W(Xk)− C)Xk

Xk+1 = Xk + αk∆Xk, αk > 0,

so that bothXk+1, (W(Xk+1)− C) � 0
(αk = 1 after the crossover.)
•• update

k ← k + 1 and then

σ

(
setσ = 0 if min{ gap

, objval} < ǫ3

)
Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 46

Algorithm continued 2

• while min{ gap
objval+1 , objval} > ǫ1

•• solve lss for search direction
. . .
•• update

k ← k + 1 and then

σk

(
setσk = 0 if min{ gap

objval + 1
, objval} < ǫ3

)

• end (while).
• Conclusion: D = L(X) ∈ EDM is approx. toA

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 47

Crossover
After thecrossover, centeringσ = 0 and steplengthα = 1, we get
q-quadratic convergence; allows forwarm starts.
Long stepscan be takenbeyond the positivity boundary. (tests
show improved convergence rates)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 48

Preconditioning

(Λ + XW) P−1(∆̂x) = −Fµ(x),

where
∆̂x = P (∆x)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 49

Diagonal Preconditioning
Optimal scaling Dennis and W. (1993) full rank matrix
A ∈ R

m×n, m ≥ n, with condition number
ω(K) := n−1trace (K)/ det(K)1/n, the optimal scaling

minω((AD)T (AD)) subject to:D positive and diagonal

solution:dii = 1/‖A:i‖2, i = 1, . . . , n
explicit expressions for preconditioner
inexpensive

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 50

Explicit Preconditioning

diagonal operatorP ; evaluate using columns ofF ′
µ(v).

k ∼= (i, j), 1 ≤ i < j ≤ n, strictly upper triangular part

‖(Λ + XW)(ek)‖2F = ‖Λ(ek)‖2F + ‖(W(ek))X‖2F
+ 〈Λ(Eij), (W(Eij))X〉 ,

where

Λ(ek) =

{
1√
2

(
Λ:ie

T
j + Λ:je

T
i

)
, if i < j

(
Λ:ie

T
i

)
, if i = j.

andXW inexpensive - 50% reduction in LSQR iterations

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 51

Numerical Tests
Pentium 4; MATLAB 6.5; 1 GIG RAM.
crossover heuristic: relative duality gap< .1.
Stopping criteria (relative duality gap)< ǫ1 = 1e− 10.
(But - average accuracy attained1e− 13, q-quadratic
convergence.)

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 52

density .0005:.001:.003, CPU times
and nnz(Λ), n=200

0.5 1 1.5 2 2.5 3

x 10
−3

100

200

300

400

500

600

700
density vs: nnz(X) and cpucnt. And, cpucnt normalized with multn by 8.9442

density vs nnz(X)
density vs cpucnt

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 53

Conclusion
Gauss-Newton direction:

Advantages/Disadvantages:
Robust, warm starts are simple, longer steps
exact primal and dual feasibility at each iteration
Can apply CG-type approaches
q-quadratic convergence
scale-invariant on the right

Future:
Need large sparse QR efficient as Cholesky
predictor-corrector

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 54

EDM Completion Problem,EDMC

• given certain fixed elements of a EDM matrixA
•the other elements are unknown (free)
•complete this matrix to an EDM

S = {(i, j) : Ai,j =
1√
2
bk is known, fixed, i < j}, |S| = m,

(EDMC)

µ∗ := min f(X) := 1
2‖X‖2F

subject to A(X) = b

X � 0,

constraintA = I · L : Sn−1 → R
|S| yields interpolation

conditions

A(X)ij = traceEijL(X) = bk, ∀k ∼= (ij) ∈ S,

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 55

Duality/Optimality for EDMC
•strict convexity, coercivityimpliescompact level sets
•EDMC attained and no duality gap (actually primal and dual
attainment)
Lagrangian dual

µ∗ = ν∗ := max
Λ�0,y∈R|S|

min
X

1

2
‖X‖2F + yT (b−A(X))− trace ΛX

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 56

characterization of optimality
THEOREMSuppose that the feasible set of EDMC is not the
empty set. Then the optimal solution of EDMC is
D = L ([A∗(y)]+), wherey is the unique solution of the single
equation

A ([A∗(y)]+) = b,

andB+ denotes the projection of the symmetric matrixB ∈ Sn−1

onto the conePn−1.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 57

Proof
optimality conditions after differentiation

X = A∗(y) + Λ � 0, Λ � 0, dual feasibility
A(X) = b primal feasibility

ΛX = 0 complementary slackness

This means thatA∗(y) = X − Λ, where bothX � 0,Λ � 0, and
ΛX = 0. Therefore the three symmetric matrices
W = A∗(y), X,Λ are mutually diagonalizable. We write
X = PDXPT , Λ = PDΛPT , i.e. we conclude that
W = A∗(y) = P (DX −DΛ) PT , DXDΛ = 0. Therefore
[A∗(y)]+ = PDXPT = X.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 58

Efficient/Explicit Solution if y ≥ 0

large class (generic?) can be solved in polytime.

COROLLARY The linear operatorA is onto andAA∗ is
nonsingular. Suppose thaty = (AA∗)−1b ∈ R

m
+ . Then

D = L (A∗(y))

is the unique solution of EDMC .
PROOF: ThatA is onto follows from the definitions.
If y ≥ 0, then the matrixI(y) ≥ 0 with 0 diagonal. Therefore,
X = L∗(I(y)) is diagonally dominant with nonnegative diagonal,
i.e. X � 0 by Gersgorin’s disk theorem. This implies thatD is a
distance matrix and it satisfies the interpolation conditions, i.e. it
satisfies the optimality conditions in the Theorem.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 59

Numerics: dim vs dens with
of failures in 100 tests

thoughy = A†b ≥ 0 doesnot hold in general, we still get
a distance matrixD, i.e.A∗(y) � 0.
n = 10 : 10 : 100; density.1 : .1 : .8.

n\density .1 .2 .3 .4 .5 .6 .7 .8
10 19 27 29 25 32 27 20 38
20 6 20 23 22 27 21 28 28
30 8 8 9 9 11 16 17 24
40 2 2 6 5 14 17 20 17
50 2 0 2 8 7 8 15 12
60 1 1 1 1 3 8 15 11
70 2 0 3 1 5 7 6 15
80 1 0 0 4 2 4 9 9
90 1 0 0 1 3 2 5 6
100 0 0 0 0 1 6 5 5

.

Robust Algorithms for Large Sparse Semidefinite Programming (SDP) – p. 60

	 Fields Institute, 2004
	OUTLINE
	Notation and Motivation
	Linear Primal-Dual Pair of SDPs
	(some of the)
APPLICATIONS
	 SIMILARITIES to LP: (i)
Duality
	apply adjoint
	exploit {em Hidden Constraint}
	Characterization of Optimality
	SDP Application: (Direct)
Max-Cut Relaxation
	SDP from general quadratic approx? {cyan (Lagr. Relax.!)}
	Weak Duality
	Homogenization
	Apply Hidden SDP Constraint\ ({cyan Hessian psd})
	Dual of Dual $ightarrow $ SDP Relaxation
	Tractable Relaxations
	({cyan Perturbed})
Optimality Conditions
	(Non) Interior
Path-Following
	dual log-barrier problem;\ parameter $mu >0$
	Jacobian Ill-conditioning
	Exploited Special Structure
	{cyan Overdetermined} system in SDP case
	Reduction/{Block-Elimination}\ $ightarrow $ Normal Equations
	with right-hand side
	Step 2: Eliminate $Delta x$ from row 2
	The right-hand side becomes
	Ill-conditioning
	EXAMPLE
	search directions found
	Alternate Second Step;\ Stable Reduction
	The right-hand side becomes
	(Nearest)
Euclidean Distance Matrix Completion using SDP
	Applications
	Mixed-Cone Formulation
	Connection between SDP and EDM
	Operator Notation:
	Characterization of EDM using SDP
	adjoint/generalized inverse
	Duality and Optimality Conditions
	{�f Wolfe dual} and optimality conditions
	Bilinear System
	Linearization
	Algorithm: p-d i-e-p framework
	Algorithm continued 1
	Algorithm continued 2
	Crossover
	Preconditioning
	Diagonal Preconditioning
	Explicit Preconditioning
	Numerical Tests
	 density .0005:.001:.003, CPU times and nnz($Lambda $),
n=200
	Conclusion
	EDM Completion Problem, EDMC
	Duality/Optimality for EDMC
	characterization of optimality
	Proof
	Efficient/Explicit Solution if $y geq 0$
	Numerics: dim vs dens with\ $#$ of failures in 100 tests

