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High-Fidelity Aerodynamic Shape Optimization

• Start from a baseline geometry provided by a
conceptual design tool.

• High-fidelity models required for transonic
configurations where shocks are present,
high-dimensionality required to smooth these
shocks.

• Accurate models also required for complex
supersonic configurations, subtle shape
variations required to take advantage of
favorable shock interference.

• Large numbers of design variables and
high-fidelity models incur a large cost.
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Aero-Structural Aircraft Design Optimization

• Aerodynamics and structures are core
disciplines in aircraft design and are very
tightly coupled.

• By including structural analysis and design
there is no need to impose artificial wing
thickness constraints.

• Want to simultaneously optimize the
aerodynamic shape and structure, since there
is a trade-off between aerodynamic
performance and structural weight, e.g.,

Range ∝ L
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The Need for Aero-Structural Sensitivities
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• Sequential optimization
does not lead to the true
optimum.

• Aero-structural optimization
requires coupled
sensitivities.

• Add structural element sizes
to the design variables.

• Including structures in the
high-fidelity wing
optimization will allow
larger changes in the design.
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The Need for Aero-Structural Sensitivities
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Optimization Methods

• Intuition: decreases with increasing dimensionality.

• Grid or random search: the cost of searching the design
space increases rapidly with the number of design variables.

• Genetic algorithms: good for discrete design variables and
very robust; but infeasible when using a large number of design
variables.

• Nonlinear simplex: simple and robust but inefficient for more
than a few design variables.
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• Gradient-based: the most efficient for a large number of
design variables; assumes the objective function is “well-
behaved”.
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Motivation

• By default, most gradient-
based optimizers use finite-
differences for sensitivity
analysis.

• When the cost of
calculating the sensitivities is
proportional to the number
of design variables, and this
number is large, sensitivity
analysis is the bottleneck.

• Accurate sensitivities are
required for convergence.
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Sensitivity Analysis Methods

• Finite Differences: very popular; easy, but lacks robustness and accuracy;
run solver Nx times.

df
dxn

≈ f(xn + h)− f(x)
h

+O(h)

• Complex-Step Method: relatively new; accurate and robust; easy to
implement and maintain; run solver Nx times.

df
dxn

≈ Im [f(xn + ih)]
h

+O(h2)

• Automatic Differentiation: accurate; ease of implementation and cost
varies.

• (Semi)-Analytic Methods: efficient and accurate; long development time;
cost can be independent of Nx.
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Complex-Step Derivative Approximation

Can also be derived from a Taylor series expansion about x with a complex step
ih:

f(x+ ih) = f(x) + ihf ′(x)− h2f
′′(x)
2!

− ih3f
′′′(x)
3!

+ . . .

⇒ f ′(x) =
Im [f(x+ ih)]

h
+ h2f

′′′(x)
3!

+ . . .

⇒ f ′(x) ≈ Im [f(x+ ih)]
h

No subtraction! Second order approximation.
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Simple Numerical Example

Step Size, h
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Estimate derivative at x = 1.5
of the function,

f(x) =
ex

√
sin3x+ cos3x

Relative error defined as:

ε =

∣∣∣f ′ − f ′ref

∣∣∣∣∣∣f ′ref

∣∣∣
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Connection to Automatic Differentiation

Same example as previous talk: f = (xy + sinx+ 4)(3y2 + 6),

t1 = x+ ih, t2 = y

t3 = xy + iyh

t4 = sinx coshh+ icosx sinhh

t5 = xy + sinx coshh+ i(yh+ cosx sinhh)

t6 = xy + sinx coshh+ 4 + i(yh+ cosx sinhh)

t7 = y2, t8 = 3y2, t9 = 3y2 + 6

t10 = (xy + sinx coshh+ 4)
(
3y2 + 6

)
+ i(yh+ cosx sinhh)

(
3y2 + 6

)
df
dx

≈ Im [f(x+ ih, y)]
h

=
(
y + cosx

sinhh
h

)(
3y2 + 6

)
Superfluous calculations are made.

For sufficiently small h they vanish but still affect speed.
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Objective Function and Governing Equations

Want to minimize scalar objective function,

I = I(xn, yi),

which depends on:

• xn: vector of design variables, e.g. structural plate thickness.

• yi: state vector, e.g. flow variables.

Physical system is modeled by a set of governing equations:

Rk (xn, yi (xn)) = 0,

where:

• Same number of state and governing equations, i, k = 1, . . . , NR

• Nx design variables.
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Sensitivity Equations
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Total sensitivity of the objective function:

dI
dxn

=
∂I

∂xn
+
∂I

∂yi

dyi

dxn
.

Total sensitivity of the governing equations:

dRk

dxn
=
∂Rk

∂xn
+
∂Rk

∂yi

dyi

dxn
= 0.
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Solving the Sensitivity Equations

Solve the total sensitivity of the governing equations

∂Rk

∂yi

dyi

dxn
= −∂Rk

∂xn
.

Substitute this result into the total sensitivity equation

dI
dxn

=
∂I

∂xn
− ∂I

∂yi

− dyi/ dxn︷ ︸︸ ︷[
∂Rk

∂yi

]−1
∂Rk

∂xn
,︸ ︷︷ ︸

−Ψk

where Ψk is the adjoint vector.
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Adjoint Sensitivity Equations

Solve the adjoint equations

∂Rk

∂yi
Ψk = − ∂I

∂yi
.

Adjoint vector is valid for all design variables.

Now the total sensitivity of the the function of interest I is:

dI
dxn

=
∂I

∂xn
+ Ψk

∂Rk

∂xn

The partial derivatives are inexpensive, since they don’t require the solution of
the governing equations.
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Aero-Structural Adjoint Equations
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Two coupled disciplines: Aerodynamics (Ak) and Structures (Sl).

Rk′ =
[
Ak

Sl

]
, yi′ =

[
wi

uj

]
, Ψk′ =

[
ψk

φl

]
.

Flow variables, wi, five for each grid point.

Structural displacements, uj, three for each structural node.
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Aero-Structural Adjoint Equations

∂Ak
∂wi

∂Ak
∂uj

∂Sl
∂wi

∂Sl
∂uj


T [
ψk

φl

]
= −

 ∂I∂wi
∂I
∂uj

 .
• ∂Ak/∂wi: a change in one of the flow variables affects only the residuals of

its cell and the neighboring ones.

• ∂Ak/∂uj: wing deflections cause the mesh to warp, affecting the residuals.

• ∂Sl/∂wi: since Sl = Kljuj − fl, this is equal to −∂fl/∂wi.

• ∂Sl/∂uj: equal to the stiffness matrix, Klj.

• ∂I/∂wi: for CD, obtained from the integration of pressures; for stresses, its
zero.

• ∂I/∂uj: for CD, wing displacement changes the surface boundary over which
drag is integrated; for stresses, related to σm = Smjuj.
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Lagged Aero-Structural Adjoint Equations

Since the factorization of the complete residual sensitivity matrix is impractical,
decouple the system and lag the adjoint variables,

∂Ak

∂wi
ψk = − ∂I

∂wi︸ ︷︷ ︸
Aerodynamic adjoint

−∂Sl

∂wi
φ̃l,

∂Sl

∂uj
φl = − ∂I

∂uj︸ ︷︷ ︸
Structural adjoint

−∂Ak

∂uj
ψ̃k,

Lagged adjoint equations are the single discipline ones with an added forcing
term that takes the coupling into account.

System is solved iteratively, much like the aero-structural analysis.
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Total Sensitivity

The aero-structural sensitivities of the drag coefficient with respect to wing shape
perturbations are,

dI
dxn

=
∂I

∂xn
+ ψk

∂Ak

∂xn
+ φl

∂Sl

∂xn
.

• ∂I/∂xn: CD changes when the boundary over which the pressures are
integrated is perturbed; stresses change when nodes are moved.

• ∂Ak/∂xn: the shape perturbations affect the grid, which in turn changes the
residuals; structural variables have no effect on this term.

• Sl/∂xn: shape perturbations affect the structural equations, so this term is
equal to ∂Klj/∂xnuj − ∂fl/∂xn.
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Coupled Direct Methods

The single discipline direct method equations yield,∂Ak
∂wi

∂Ak
∂uj

∂Sl
∂wi

∂Sl
∂uj


 dwi

dxn
duj

dxn

 = −

∂Ak
∂xn
∂Sl
∂xn

 .
An equivalent alternate approach is, I −∂wi

∂uj

−∂uj

∂wi
I


 dwi

dxn
duj

dxn

 =

∂wi
∂xn
∂uj

∂xn

 .
Solving either of these, we then use the total sensitivity equation

df
dxn

=
∂f

∂xn
+
∂f

∂uj

duj

dxn
+
∂f

∂wi

dwi

dxn
.
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Alternate Coupled Adjoint Method

Similarly to the alternate coupled direct method, there is an alternate coupled
adjoint method.  I −∂wi

∂uj

−∂uj

∂wi
I


T [

ψ̄i

φ̄j

]
=

 ∂f∂wi
∂f
∂uj

 ,
ψ̄k has a different meaning from the standard adjoint and therefore requires a
different total sensitivity equation,

df
dxn

=
∂f

∂xn
+ ψ̄i

∂wi

∂xn
+ φ̄j

∂uj

∂xn
,

where the partial derivatives of the state variables (∂wi/∂xn, ∂uj/∂xn) also
require the solution of the corresponding governing equations.
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3D Aero-Structural Design Optimization Framework

Flow Geometry StructureSurface
Nodal forces

Nodal
displacements

pressures

Mesh
displacements

• Aerodynamics: SYN107-MB, a
parallel, multiblock Navier–Stokes
flow solver.

• Structures: detailed finite element
model with plates and trusses.

• Coupling: high-fidelity, consistent
and conservative.

• Geometry: centralized database for
exchanges (jig shape, pressure
distributions, displacements.)

• Coupled-adjoint sensitivity analysis:
aerodynamic and structural design
variables.
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Sensitivity of CD wrt Shape
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Sensitivity of CD wrt Structural Thickness
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Structural Stress Constraint Lumping

To perform structural optimization, we need the sensitivities of all the stresses
in the finite-element model with respect to many design variables.

There is no method to calculate this matrix of sensitivities efficiently.

Therefore, lump stress constraints

gm = 1− σm

σyield
≥ 0,

using the Kreisselmeier–Steinhauser function

KS (gm) = −1
ρ

ln

(∑
m

e−ρgm

)
,

where ρ controls how close the function is to the minimum of the stress
constraints.

Mδ0 . Lab [http://mdolab.utias.utoronto.ca] 26



Sensitivity of KS wrt Shape
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Sensitivity of KS wrt Structural Thickness
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Computational Cost vs. Number of Variables
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Computational Cost Breakdown
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Supersonic Business Jet Optimization Problem

Minimize:

I = αCD + βW

where CD is that of the cruise
condition.

Subject to:

KS(σm) ≥ 0
where KS is taken from a maneuver
condition.

With respect to: external shape and
internal structural sizes.
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Baseline Design
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Design Variables
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Aero-Structural Optimization Results
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Conclusions

• Developed the general formulation for a coupled-adjoint method for
multidisciplinary systems.

• Applied this method to a high-fidelity aero-structural solver.

• Showed that the computation of sensitivities using the aero-structural adjoint
is extremely accurate and efficient.

• Demonstrated the usefulness of the coupled adjoint by optimizing a supersonic
business jet configuration.
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Questions?
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MDO Architectures
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Aero-Structural Optimization Convergence History
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Long Term Vision

Build a large-scale, versatile MDO framework for aircraft design

Conceptual
Design

Detailed
Design

Preliminary
Design
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CAD
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Multi-Disciplinary
Analysis
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