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Selected numerical results

Software and Conclusions

Our aim is to provide usable algorithms for expensive
simulation-driven design. We use surrogates, but we solve the
simulation-driven problem
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Target Class of Problems

(NLP) minimize f (x)

subject to x ∈ Ω,

where f : <n → <∪ {∞} may be discontinuous and:

I the functions are expensive black boxes - secs, mins, days,
weeks

I the functions provide few correct digits and may fail
unexpectedly even for x ∈ Ω

I the constraints are nonlinear, nonconvex, and may be yes/no

I accurate approximation of derivatives is problematic
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Relation of target problems to design

The design problem is:

minimize fp(x)

subject to x ∈ X ∩ {x ∈ <n : Cp(x) ≤ 0},

There are parameters and variables:

I Contextual parameters p, supposedly fixed, and

I Optimization or design or control variables x
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Properties of the design problem

I p is fixed in the simulation, but it is subject to uncertainty
because of incomplete knowledge (e.g. material properties) or
because the product is used differently (e.g., the altimeter is
off by 5%)

I x ∈ X must be satisfied for the underlying simulations for
fp,Cp to be called.

I Cp(x) ≤ 0 only has to hold at the solution
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Properties of variables and constraints

I Function evaluations typically involve numerically linking
legacy PDE solvers.

Evaluations may fail unexpectedly

I There are few correct digits. Accurate approximation of
derivatives is problematic

I Some variables are categorical, i.e., the simulations only run
with certain discrete choices, e.g., choice and sequencing of
manufacturing processes. We rigorously treat categorical
optimization variables in our algorithms
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Uncertainty in design variables

Instead of specified design x∗, the delivered product might be the
design specified by a nearby x ,

and so every design near the one we
find must be acceptable

This is a very common difficulty, but it is tough to get good data
on the distribution

Robustify against such “variability” by giving up some optimality
at a given point in return for optimality over nearby designs
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Uncertainty in context variables

Products are designed for optimal performance under specified
operating conditions, loads, etc

We would be willing to give up some performance at the exact
conditions p in return for optimal performance over all likely
nearby conditions q - or we can constrain probability of failure for
the nominal p

Seems to be “chance constrained” stochastic programming -
nothing new
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Hubris or Sanguinity?

Both types of uncertainty can be modeled for optimization by
incorporation into f ,C

minimize f̂ (x)

subject to x ∈ X̂ ∩ {x ∈ <n : Ĉ (x) ≤ 0},

where f̂ (x), ĉj(x) incorporate uncertainty modeled by the user’s
scheme of choice

Still belongs to target class, Bring ‘em on for now, but seek tighter
coupling
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A confidence builder

Meckesheimer, Booker, and Torng report very good performance of
our approach on some structural engineering problems in dealing
with probability of failure by constraints or as the objective

Appeared in OTPE special issue: “Reliability based design
optimization using Design Explorer” (Design Explorer is Boeing’s
implementation of the surrogate management framework - SMF)

From this point on, assume the formulation incorporates
uncertainty
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A strawman surrogate approach

1. Choose surrogates sf and SC based on either:

1.1 simplified physical models; or
1.2 surfaces obtained from f ,C values at selected sites

2. Minimize sf (x) for SC (x) ≤ 0 to obtain xs .
Every user has their favorite approach for this part

3. Compute f (xs),C (xs) to determine if improvement has
been made over the best x found to date
Stalls when surrogate stagnates
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Trailing edge design for unsteady flow

Optimize shape for total acoustic noise reduction. Work of
Stanford fluids grad student Alison Marsden, strawman left and
SMF right

11

Trailing edge design for unsteady flow

Optimize shape for total acoustic noise reduction. Work of Alison

Marsden, strawman left and SMF right

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

N
or

m
al

iz
ed

 C
os

t F
un

ct
io

n

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

N
or

m
al

iz
ed

 C
os

t F
un

ct
io

n

– Typeset by FoilTEX – Version 11/03John Dennis Optimization Using Surrogates for Engineering Design



Background: Introduction
The Surrogate Management Framework

Some numerical results
Software and Conclusions

Target problems
The strawman surrogate algorithm
Closed and Open Constraints

Closed constraints - a barrier approach

To enforce X constraints, replace f by a barrier objective

fX (x) :=

{
f (x) if x ∈ X ,
+∞ otherwise.

Then apply the unconstrained algorithm to fX .

The quality of the solution found by the algorithm depends the
local smoothness of f , not of fX .

Our theory is powerful for this approach, which saves LES runs in
Alison Marsden’s application to trailing edge design in fully
turbulent flow.
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Open constraints

Open constraints need not be satisfied at every iteration
Open constraints must be satisfied at convergence

Let h(x) be the aggregate open constraint violation at x . We use:

h(x) =
∑

j

max(0, cj(x))2

h inherits smoothness from C

Note that hX (x) = 0 iff x is feasible for both open and closed
constraints
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Ways to handle open constraints

I Choose ρ large enough and minimize the augmented
Lagrangian fX (x) + ΛC (x) + ρhX (x)

I Penalty methods may require ρ to become very large and
robustness is an issue. Good estimates of Λ require derivatives

I Use a filter method and forget about ρ and Λ

We use the filter. (originally idea from Fletcher & Leyffer)

We admit that our filter theory is currently weaker than for other
approaches. Charles Audet and I are working on it.
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Final filter for RANS trailing edge design
A trial point x is unfiltered if hX (x) < hmax and no earlier point is
at least as optimal and as feasible
Successful iterations find unfiltered points
Unsuccessful iterations don’tEvolution of the filter

Cost 
function

value

Constraint violation
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The SMF pseudo code

Given initial surrogates sf , sC and p0 ∈ M0, a mesh on X ,
let P0 ⊂ M0 be p0 and the points of M0 adjacent to x0

For k = 0, 1, · · · , do

1. (Strawman)Search on sf , sC to find an unfiltered xk+1 ∈ Mk .
If found, then set Mk+1 = Mk and update the surrogates;

2. Else if pk is the only unfiltered point in Pk ; Then set
xk+1 = xk and Mk+1 = Mk/4 and update the surrogates;
Else return to 1

John Dennis Optimization Using Surrogates for Engineering Design
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2. Else if pk is the only unfiltered point in Pk ; Then set
xk+1 = xk and Mk+1 = Mk/4 and update the surrogates;
Else return to 1
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Gather surrogate training setStep 1: initial data36 CHAPTER 2. THE SURROGATE MANAGEMENT FRAMEWORK
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Figure 2.3: Evaluation of three initial points on the mesh. This is the first of five plots to
illustrate the steps in the SMF method.
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Figure 2.4: The current incumbent point is marked with a ∗. A surrogate is constructed
to approximate the function using known data points. The minimum of the surrogate is
marked with a diamond.
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Use surrogate to predict better designStep 2: surrogate fit

36 CHAPTER 2. THE SURROGATE MANAGEMENT FRAMEWORK
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Figure 2.3: Evaluation of three initial points on the mesh. This is the first of five plots to
illustrate the steps in the SMF method.
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Figure 2.4: The current incumbent point is marked with a ∗. A surrogate is constructed
to approximate the function using known data points. The minimum of the surrogate is
marked with a diamond.
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Check for improvementStep 3: evaluate function
2.3. KRIGING SURROGATE MODELS 37
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Figure 2.5: A SEARCH step is performed. The surrogate minimizer is evaluated by the true
function, but is found to give a higher value than the incumbent point. The incumbent
solution, still the same, is marked by a ∗.

right in the figure. We note that the poll directions can change, as shown in the figure, from

one iteration to the next as long as they form a positive basis and points are evaluated on

the mesh. Near the boundary of the parameter space, the poll directions need to conform

to the boundaries for convergence of the method. In the case shown, a 2n basis can be used

since the boundary is rectangular.

Because the SMF method has distinct SEARCH and POLL steps, convergence theory for

the method reduces to convergence of pattern search methods. Convergence of the SMF

method is discussed at length by Booker et al. (1999) and by Serafini (1998). Pattern search

convergence theory is presented by Audet & Dennis (2003), Torczon (1997) and Lewis &

Torczon (1999, 2000, 2002). An extensive review of methods for optimization by direct

search is given by Kolda et al. (2003).

2.3 Construction of surrogate models using Kriging

One of the important features of SMF is the use of a surrogate to predict the minimum

of the cost function. This section is meant to be a tutorial in which the construction of

Find true function 
value at predicted 

pointCurrent best point

John Dennis Optimization Using Surrogates for Engineering Design



Background: Introduction
The Surrogate Management Framework

Some numerical results
Software and Conclusions

If surrogate fails, then POLL
Step 4: POLL

38 CHAPTER 2. THE SURROGATE MANAGEMENT FRAMEWORK
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Figure 2.6: Polling around the incumbent solution, marked by a ∗. Three poll points are
evaluated (shown by open circles) to form an n + 1 positive basis in two dimensions. The
poll points in this example have higher cost function values than the incumbent. The POLL
step is unsuccessful.
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The POLL step

I The POLL step is the key to the proof that the SMF
converges to a minimizer of the true expensive function.

I The POLL step consists of evaluating the actual function on
on neighboring mesh points in a positive spanning set of
directions until an unfiltered design is found.

I If no unfiltered point is found in the POLL, the mesh is
refined and we return to use the surrogate on the finer mesh.

There are NO assumptions on the surrogate, but better surrogates
provide better predictions and hence fewer expensive function calls.
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How good is the SMF?

It finds designs overnight as good or much better than designs that
took months to find the old way - if they could be found

Is the SMF that good?

Presently it is the only realistic possibility for really expensive
problems

Here are some results:
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Comparisons on 31d helicopter example
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Boeing wing planform design - infeasible baseline

14

Boeing wing planform design

.

X

YDesign Variables:
-- Location of spars, leading edge,
    trailing edge
-- Thickness
-- Aero loading distribution

Infeasible baseline design

# of # of

n ctrs fevals

A 15 11 304

B 15 11 292
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Boeing SonicCruiser planform initial filter
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A planform filter after 50 evaluations
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Feasibility after 117 evaluations
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Polynomial vs DACE surrogates
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Recovering from a bad surrogate
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Implementations

∗=freely available. Red=under active development.

I NOMAD C++∗: MADS with barrier and filter
I in use in company-wide tool at ExxonMobil

I NOMADm∗: Our MatLab version with everything
I in use at Siemens

I Design Explorer: Boeing’s implementation available to
nonBoeing users from Phoenix Integration

I includes DACE surrogates, used on the Boeing 777 and in use
on the 7e7

I Alison Marsden’s Matlab code Used for trailing edge design
I she has completed one iteration with her SMF implementation

on LES turbulent flow trailing edge design with a 54%
reduction in noise - 3 weeks per simulation
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Conclusions and Claims

I The SMF is a completely rigorous tool for engineering design
governed by expensive simulations. It solves the expensive
problem - not the surrogate problem

I The SMF is based on our derivative-free MADS algorithms

I The quality of the surrogate as an approximation is not an
assumption, but a good surrogate saves expensive simulations

I The ANOVA implementation in Boeing’s Design Explorer
suggests which are the important design variables

I The work to find an approximation based on a large training
set is not justified for its use in surrogate optimization, but it
may be justified if the approximation has other purposes -
Phillips Research NL does this
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