Automatic Differentiation

George F. Corliss, Marquette University, Milwaukee

Collaborators:
Bischof, Carle, Griewank, Hovland, Rall, Chang, ...

Outline of the talk:

e Need derivatives?

e Functionality of automatic differentiation
e Challenges - mathematical

e Challenges - computer science

e Survey field, not tool user manual

A compilation of available automatic differentiation
software: www.mcs.anl.gov/Projects/autodiff/AD_Tools/

Fields Industrial Optimization Seminar,
University of Toronto, December 7, 2004

Abstract

Automatic differentiation is a technique for
providing fast, accurate values of derivative
objects (gradients, Hessians, Taylor series)
required by modern tools for optimization,
nonlinear systems, differential equations,

or sensitivity analysis. We outline some needs
and applications for derivatives, survey the
functionality of AD in forward and reverse modes, and discuss some of
the mathematical and computer science challenges of AD.

This talk should be accessible after first semester calculus and a
programming course in data structures. It should be interesting to
researchers in symbolic computation or in scientific or engineering
applications requiring almost any numerical analysis technique
requiring derivatives.

Thunderstorm image: www.theweatherclubl.homestead.com/tpics.html

Need derivatives?

Top 10 indicators that AD may be for you:

Code requires derivatives
Using finite differences

. Sensitivity
. Adjoints

. Stiff ODE's
0. DAE's

Interval remainder terms
Nonlinear equations

RN

6
7
Newton’'s method 8. Optimization
0
1

If any
of these sound familiar, you are in danger
of finding automatic differentiation useful

e Microsoft Excel (via Frontline Systems)
e AMPL (www.ampl.com)

e NEOS (www-neos.mcs.anl.gov)
all use AD

See IMSL library

Photography by Joaquim Martins, mdolab.utias.utoronto.ca/cgi-bin/
ids/index.cgi?mode=album&album=./Aeronautics

Sensitivities?

Cloud near Melbourn, FL. From www.theweatherclubl.homestead.com/tpics.html

4

Ten minutes later

Differentiation

Automatic/Computational:

e Propagates values
e Accurate up to round-off

Symbolic:

e Propagates expressions
e Branches?
e Large code”

Numerical;:

e Stable?
o h=7

Photography by Joagquim Martins,
mdolab.utias.utoronto.ca/cgi-bin/ids/index.cgi?mode=album&album=./

Aeronautics

AD Functionality

Given a program for the computation of a function, AD produces a
program for evaluating the derivative exactly by applying the chain
rule to the elementary instructions

Program for f

! AD

Program for f’

Source code transformation: ADIFOR, TAMC, Odyssée, Padre2, ...
Operator overloading: ADOL-C, ADOL-F, Lohner's AWA, ...

AD Functionality

AD implements the chain rule

For f = f(x1,...,2m), its gradient vector
of of
Vf=|—"...,—|,
/ [83}1 8:cm]

IS required, for example, by most algorithms for optimization.

Let v and v be functions whose gradients Vu and Vv are known or are
previously computed, we compute V f using the rules

V(utv) = Vuzx Vo,
V(uv) = uVv+ vVu,
V(u/v) = (Vu—(u/v)Vv)/v, v FO0,

for the arithmetic operations and the chain rule

Vo(u) = ¢'(u)Vau,

for differentiable functions ¢ (such as the standard functions) with
known derivatives

AD Functionality

Assignment statement

f(z,y) = (wy + sinz + 4)(3y> + 6),

executed as unary &

binary operators (code list, computational graph):

= T t¢ = ts5+4
= vy t7 = t%

= t1to tg = 3ty

= sinty tg = tg+6
= t3+1a tio = tletg

Derivatives may be evaluated in

e Forward mode
e Reverse mode

Computational Graph: f(z,y) = (zy +sinz + 4)(3y? + 6)

Result: fx,y)

10

Compute

AD - Forward Mode
0 intermedate

0 independent
With every variable u associate a derivative object Vou

In our example, start with Vox and Ve¢y and compute Vof:

t1

T

Yy

t1t2
Sinty
t3 + 14
tg + 4
t5

3t7

tg + 6
telog

Vit
Vio
Vi3
Vitg
Vig
Vig
Viy
Vig
Vig
Vi10

[1, O]

[0, 1]

t1Vito +toViq
(cost1)Vity
Vitz + Viy
Vis

2toVio

3Vi7

Vig

tgVtg + tgVig

Code for F : scalar operations

F
Code for ?9— ;

T
— Parallelize /vectorize

vector operations

yields
yields
yields
yields
yields
yields
yields
yields

to, t1]

costy, O]

to + costy, t1]

to + costy, t1]

:Oa 2t2]

:Oa 6t2]

0, 6t7]

tg(to + CcOsty), 6tote + t1to]

11

AD - Reverse Mode
0 dependent

O intermedate

Compute

ow

With every variable u associate an ADJOINT object ubar = 3
u

Key rule for the reverse mode:

of

tbar += sbar x —
ot

s= f(t,u) =
of

ubar += sbar *x —
ou

Reverse mode requires the ability to reverse the flow of the
computation

12

AD - Reverse Mode
Assignment: f(z,y) = (zy + sinz + 4)(3y? + 6)

In our example, start with

(9t10

3t10
(9t10

Otg
Ot10

Otg
Ot10

ot
31510

Otg
O0t10

Ots

of

— =1 and compute Vof:

of

1

te
Ot100tg

Otg Otg
Ot100tg

Otg Ot7

yields tg - 1 = tg

yields tg - 3 = 3ig

tg
Ot100tg
Otg Otg

yields tg -1 = tqg

13

AD - Reverse Mode (cont.)

ot Ot100t

210 — THI0TES yields tg - 1 = tg

Oty Otg Oty

ot Ot100t

100 10775 yields tg - 1 = tg

Ot3 Oty Ot3

0t10 Ot100t7 . Ot100tz .

- = lelds (3tg) - (2t tg - t1 = Otot t1t
o, ot ot T ota o1, (3te) - (2t2) +i9- 11 ot + t1tg
0t10 Ot100tag ., Ot100t3z .

— - = lelds tg - cost tg -to = tg(COSt t
o ETETS + TR y 9 1+ tg - to = to(1+ t2)

Bt1o Ot
Vf= [atllo, 3,5120} = [to(costy +t2), 6lote + t1tg]

V¢ £ = xbar * V¢x + ybar * Voy
— mostly scalar operations
— one vector parallel loop

14

BpPJIO UOIINPXo

Hascoet: Adjoining a Data-Dependence Graph

A
)
O
v o
vV .
C
O
g
DT
i) %
TN .
A

15

AD - Hybrid Mode

“Preaccumulation of Local Derivatives”

If w= f(y,z2),

0 s,
v¢w=_w.v¢y_|__w.v¢z

Oy 0z

Compute “local”

. . ow ow
derivatives — and — in the reverse mode
oy 0z

Propagate “global”
derivatives Vow in the forward mode

Generalizes to second derivatives

Navajo Bridge, Marble Canyon, Arizona, National Information Service for Earthquake

Engineering nisee.berkeley.edu/images/servlet/BrowseGodden?group=GoddenD27.1-3

16

Implementation - Source Transformation
E.g., Adifor 2.0 for Fortran [Bischof, Carle, et al.]

Identify top level subroutine:

C File: squareroot.f
C Reference: ADIFOR 2.0 User’s Guide, section 2.6

C Figure 2.4. A Very Simple Subroutine.

subroutine squareroot (x, y)
real x, y

y = sqrt (x)

end

17

Implementation - ADIFOR-generated code:

subroutine g_squareroot(g_p_, x, g_x, ldg_x, y, g_.y, 1ldg_y)
real x, y
integer g_pmax_
parameter (g_pmax_ = 1)
integer g_i_, g_p_, ldg_y, 1ldg_x
real ri_p, r2_v, g_y(ldg_y), g_x(1ldg_x)
integer g_ehfid
data g_ehfid /0/
call ehsfid(g_ehfid, ’squareroot’,’g_squareroot.f’)
if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
r2_v = sqrt(x)
if (x .gt. 0.0e0) then
ri_p =1.0e0 / (2.0e0 * r2_v)

else
call ehufsSO0 (9,x, r2_v, ri_p, g_ehfid, 42)
endif
do g i_ =1, g_p_
g-y(g_i_) = rl p * g_x(g_i)
enddo
y = r2_v

end

Implementation - Source Transformation

New main program (or modified applications algorithm):
e allocate variable storage

e call ADIFOR-generated code

e use the derivative

program driver

real x, y

real g_x(1), g_y(1)
print *, ’ Enter x: ’
read *, X

g_x(1) = 1.0

call g_squareroot (1, x, g_x, 1, y, g_y, 1)
call ehrpt

print *, y

print *, g_y(1)

end

19

Implementation - Operator Overloading
E.g., ADOL-C [Griewank, et al.]
class adouble { ... }

Features include

e Forward or reverse mode

e Partial derivatives or Taylor series

e Record computations on a “tape”

e Jacobians with structure

e Implicit functions

e ODE tools — implicit Taylor series/Padé
e “Checkpointing”

Spiral bevel gears, Emerson Power Transmission Company,

science.howstuffworks.com/gear4.htm

20

Math - Not differentiable?

f is defined, but f’ does not exist?

e E.g., f(z) =|[z]|; f(z) = max{g(z),h(z)}

e Very important — norms, scaling

Automatic differentiation differentiated the code:

if <0 then f=—z; f/= -2
else f=z; fl=2

Yields |[0] = 1 * &’

Elementary functions are supported
Issue here is how to handle user’'s code

Warning: You should know what you are doing!

21

Math - Special cases
fis
defined by a special case? E.g., f(z) = z2 [Fischer]

ifz=1then f=1;f =0
else f=2a2 fl=2xzxx*xa

You would never code it that way?77?

Many codes have hard-coded special cases

Automatic differentiation differentiates your
code,
NOT your intentions

If Interior (Closure (Domain)) %= 0, then derivatives computed = limits

22

Math - Implicit functions

Original algorithm: Function is defined ins

F(z,x) = 0 defines z«(z) and z.(z)

Precondition: P, -F(z,z) =0
Iterate: 2pt+1 = 2, — Py - F(z,7)
Converges when | — P - F:|| <p<1

e.g., Newton's method

Strategy 1: Black box
Apply AD
Usually works

May need 1 or more extra iterations
Can fail

23

Math - Implicit functions

Strategy 2: White box
Iterate function z(z) to convergence
— Tests based on F(z,x)
Then turn on AD and iterate for 2/(z)
— Tests based on F.z' + F,
— Often, one iteration suffices

Do not need to differentiate the entire iteration

Example: NASA

— Input: 6 - 100 wing shape parameters

— Generate initial 3-D finite element grid

— Iterate to steady-state pressure distribution solving PDE with
multi-grid

— Vary parameters to optimize design (uses Newton)

— f/ cost only a few % additionall!

24

Math - Implicit functions

Strategy 3: Use some math - Derivative 2/
Differentiate to get: F.2/ +F, =0

Precondition: P.-(F,2'+F;)=0
Iterate: Zl{:—l—l = 23 — P - (Fz2' + F)
Converges when | — P - Fx|| <p<1

Same condition!

A little math beats a lot of computing

Work of Gilbert, Griewank, Christianson, et al.

25

Computer Science - Compiler technologies
Source transformation and operator overloading stretch compilers

Adifor was built on Ken Kennedy, et al. (Rice) Parascope tools for
High Performance Fortran

e Analysis and annotation of computational graph
e Interprocedural dependency analysis

e Common subexpression removal

e Code pruning (unused code)

e Parallel scheduling?

Sun and NAG have let it be known that their Fortran compilers will
soon have an -AD option

26

Computer Science - Checkpointing

Reverse mode (or multiple passes of forward) records execution trace
(potentially enormous)

e Record: Operation, operands [result]
e Implies storage proportional to run time

Solution: Checkpointing, as used for execution recovery

Requires memory to store 1 checkpoints (this example)
Requires 2 forward passes of same code (this example)
Requires 1/2 as much tape storage

Vs. “Dry-run” (Hascoét)
dry-run fragment

—— N
time - —
O —
s L

27

Computer Science - Complexity
Finite difference approximation to V¢ f requires n 4+ 1 evaluations of f

Forward mode AD costs about 2-3 n x Cost(f)
e Why? f=ux*xv = f/l=uxv' 4+ 4 *v has two *

Reverse mode AD costs about 5 x Cost(f) independent of n

f: R"™ — R™ rules of thumb:

e n>>m (e.g., m = 1) prefer reverse
e n<<m (e.g.,, n=1) prefer forward

See computational graph node elimination

28

Computer Science - Complexity

Tadjoudine, Forth, and Pryce:
Roe's numerical flux (flow fields with moderate to strong shocks)

. time (VF Deviation vs
Method time (VF) time((F)) ADIFOR
Finite difference, 1-sided 0.12 10.64 4.34E-07
ADIFOR 0.15 13.37 —
TAMC (Forward) 0.13 11.94 4.66E-15
TAMC (Reverse) 0.11 10.28 5.77E-15
ADO1 (Forward) 1.55 134.68 7.99E-15
ADO0O1 (Reverse) 0.95 82.90 4.88E-15

CPU timings (in seconds) on SGI IRIX64 IP27

29

Computer Science - Graph node elimination

h1 = z1-22
ho = exp(sin(hy))
y1 = hi-ho
y2 = cos(ho)
Forward
Reverse

Hybrid? Minimize number of *

Markowitz [Griewank, Naumann]

30

Computer Science - Graph node elimination

Naumann: “Lion” and “bat” graphs

Neither vertex nor edge elimination solves the general “Optimal
Jacobian Accumulation™ problem

31

Elimination sequence

Different strategies applied to Roe

Markowitz
250 . .

N
o
o

150}
100}

A
o

Node Eliminated
Node Eliminated

0 50 100 150 200 250 50 100 150 200 250
Elimination Step Elimination Step

Markowitz (reverse bias) VLR (reverse bias)

250
200¢
150}
100}

Node Eliminated
Node Eliminated

gl
o

0 50 100 150 200 250 0 50 100 150 200 250
Elimination Step Elimination Step

Applications

See Computational Differentiation, SIAM, 1996: and Automatic
Differentiation, Springer, 2001

acoustic wave equation aerofoil optimization chemical reaction

circuit simulation computational aerodynamics computational fluid dynamics
computational quantum chemistry cooling system coupled pendula

data assimilation design optimization disordered condensed matter
diurnal kinetics advection-diffusion elastic-plastic torsion electromagnetic problem
electron paramagnetic resonance Euler equations gear tooth contact

hypoid bevel gears low thrust orbit transfer material modelling

minimum time orbit transfer model fitting model structure validation
MOS transistor model multibody dynamics Navier-Stokes solver
near-earth asteroids neutron scattering nonlinear least squares
nonlinear regression nonlinear solver North Sea herring

observer design ODE solver optimal control

parameter identification parametric uncertainty analysis partial differential equations
periodic functions power plant model race car performance
radiation diffusion rational approximation sea ice

sensitivity analysis structural analysis structural mechanics

terrain modelling thermal-hydraulic vehicle dynamics

33

Conclusions

Derivatives can be computed
— efficiently

— accurately

— easily

Users can be expected to provide for library codes
Algorithm designers need not avoid derivatives

Black box users
— Minimize programmer and user effort
— Gets the right answer competitively with FD

Wizards
— Willing to apply knowledge of problem
— Get the right answer FAST

George Corliss, George.Corliss@Marquette.edu

AD dragon - logo for AD2000, Automatic Differentiation: From Simulation to

Optimization, Nice, France, June 2000

34

