

# Interior Point Algorithms for Large-Scale Nonlinear Programming: Applications in Dynamic Systems

L. T. Biegler
Chemical Engineering Department
Carnegie Mellon University
Pittsburgh, PA

March, 2005



### **Overview**

#### Introduction

NLP Formulation for Dynamic Systems

#### Large Scale NLP for Dynamic Systems

- Flight Path Trajectory Planning and Control
- Grade Transitions for Polymerization Processes

### Optimization Models with Complementarity Constraints

Metabolic Flux Balances for Yeast Fermentation

#### Conclusions

## **Dynamic Optimization Problem**

min 
$$\psi$$
 (z(t), y(t), u(t), p, t<sub>f</sub>)

S.t. 
$$\frac{dz(t)}{dt} = F(z(t), y(t), u(t), t, p)$$

$$G(z(t), y(t), u(t), t, p) = 0$$

$$z^{\circ} = z(0)$$

$$z^{!} \leq z(t) \leq z^{u}$$

$$y^{!} \leq y(t) \leq y^{u}$$

$$u^{!} \leq u(t) \leq u^{u}$$

$$p^{!} \leq p \leq p^{u}$$

- t, time
- z, differential variables
- y, algebraic variables

- t<sub>f</sub>, final time
- u, control variables
- p, time independent parameters



## **Dynamic Optimization Approaches**





### **Collocation on Finite Elements**





Differential variables Continuous



Algebraic and Control variables Discontinuous



# Nonlinear Programming Formulation





# Nonlinear Programming Problem

$$\min \psi \left(z_{i}, y_{i,q}, u_{i,q}, p, t_{f}\right)$$

s.t. 
$$\left(\frac{dz}{dt}\right)_{i,j} = F\left(z_{i-1}, \frac{dz}{dt_{i,j}}, z_{i}, y_{i,j}, u_{i,j}, p\right)$$

$$G\left(z_{i-1}, \frac{dz}{dt_{i,j}}, z_{i}, y_{i,j}, u_{i,j}, p\right) = 0$$

$$z_{i} = f\left(\frac{dz}{dt_{i-1,j}}, z_{i-1}\right)_{i}$$

$$z_{0}^{o} = z(0)$$

$$z_{i}^{l} \leq z_{i} \leq z_{i}^{u}$$

$$y_{i,j}^{l} \leq y_{i,j} \leq y_{i,j}^{u}$$

$$u_{i,j}^{l} \leq u_{i,j} \leq u_{i,j}^{u}$$

$$p^{l} \leq p \leq p^{u}$$

 $\min_{x \in \Re^n} f(x)$ 

s.t c(x) = 0

 $a \le x \le b$ 



# Simultaneous Dynamic Optimization (Direct Transcription)

#### Advantages

- Equivalence of NLP solutions and Euler-Lagrange conditions
- Convergence rates to Euler-Lagrange conditions
- Treatment of open-loop unstable systems
- Treatment of path constraints
- Exploit sparsity and structure

### Challenges

- Accurate state and control profiles
  - Moving finite elements
  - Formulations with embedded error criteria
- Solution of large-scale NLPs



# Large Scale NLP Algorithms

Motivation: Improvement of Successive Quadratic Programming as Cornerstone Algorithm

→ process optimization for design, control and operations

**Evolution of NLP Solvers:** 



1999-02: Simultaneous dynamic optimization over 1 000 000 variables and constraints

Current: Tailor structure, architecture and problems



# IPOPT Algorithm – Features

#### Line Search Strategies for Globalization

- $l_2$  exact penalty merit function
- augmented Lagrangian merit function
- Filter method (adapted and extended from Fletcher and Leyffer)

#### **Hessian Calculation**

- BFGS (full/LM and reduced space)
- SR1 (reduced space)
- Exact full Hessian (direct)
- Exact reduced Hessian (direct)
- Preconditioned CG

#### Algorithmic Properties

- Globally and superlinearly convergent (see Wächter and B., 2005a,b,c)
- Weaker assumptions than other codes
- Easily tailored to different problem structures

#### Freely Available

- CPL License and COIN-OR distribution
- new version recently rewritten in C++
- Solved on thousands of test problems and applications
- Code avaliable at http://www.coin-or.org

# Comparison of NLP Solvers: Data Reconciliation (Poku, Kelly, B. (2004))









# Chemical Air Traffic Control – 3D Conflict Resolution

(Raghunathan et al., (2004)



Figure 1: Three dimensional and top view of an optimal resolution maneuver for an orthogonal two-aircraft encounter ( $\eta = 15$  and  $\mu_1 = \mu_2 = 0.5$ ).



# Air Traffic Control – Simple Kinematic Model

$$\min_{\substack{i=1\\ \text{s.t.}}} \sum_{i=1}^n \mu_i J_i(v_{x,i},v_{y,i},v_{z,i})$$
 s.t. 
$$\frac{\frac{dx_i}{dt} = v_{x,i}(t); \quad x_i(t_0) = x_{i,0}; \quad x_i(t_f) = x_{i,f} \qquad i = 1, \dots, n}{\frac{dy_i}{dt} = v_{y,i}(t); \quad y_i(t_0) = y_{i,0}; \quad y_i(t_f) = y_{i,f} \qquad i = 1, \dots, n}{\frac{dz_i}{dt} = v_{z,i}(t); \quad z_i(t_0) = z_{i,0}; \quad z_i(t_f) = z_{i,f} \qquad i = 1, \dots, n}$$
 Protection Zone 
$$(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2 \geq R^2 \vee |z_i - z_j(t)| \geq H \quad i, j = 1, \dots, n, i \neq j.$$

where:

$$J(v_x,v_y,v_z) = rac{1}{2} \int [(v_x(t))^2 + (v_y(t))^2 + \eta^2(v_z(t))^2] dt$$

Note nonconvexity in constraints



# Air Traffic Control – Point Mass Model Detailed Flyability Behavior

**Equations of Motion** 

$$egin{array}{lll} rac{dx_i}{dt} &=& V_i \cos \gamma_i \cos \chi_i &; & x_i(t_0) = x_{i,0}; & x_i(t_f) = x_{i,f} \ rac{dy_i}{dt} &=& V_i \cos \gamma_i \sin \chi_i &; & y_i(t_0) = y_{i,0}; & y_i(t_f) = y_{i,f} \ rac{dz_i}{dt} &=& V_i \sin \gamma_i &; & z_i(t_0) = z_{i,0}; & z_i(t_f) = z_{i,f} \end{array}$$

**Detailed Flight Equations** 

$$egin{array}{lcl} rac{dV_i}{dt} &=& rac{T_i-D_i}{m_i}-g\sin\gamma_i &; & V_i(t_0)=V_{i,0} \ rac{d\gamma_i}{dt} &=& rac{g}{V_i}\left(rac{L_i\cos\phi_i}{gm_i}-\cos\gamma_i
ight); & \gamma_i(t_0)=\gamma_{i,0} \ rac{d\chi_i}{dt} &=& rac{L_i\sin\phi_i}{m_iV_i\cos\gamma_i}; & \chi_i(t_0)=\chi_{i,0} \end{array}$$

**Protection Zone** 

$$|z_i(t) - z_j(t)| \ge H \quad \lor \quad (x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2 \ge R^2 \quad j = 1, \dots, n, i \ne j$$

$$D_i(t) = 0.01 
ho_{\mathrm{air}}(V_i(t))^2 S_i + rac{0.6(L_i(t))^2}{
ho_{\mathrm{air}}(V_i(t))^2 S_i}$$
 $V_{i,\mathrm{min}} \leq V_i(t) \leq V_{i,\mathrm{max}} \qquad |\phi_i(t)| \leq \phi_{i,\mathrm{max}}$ 
 $0 \leq T_i(t) \leq T_{i,\mathrm{max}} \qquad 0 \leq L_i(t) \leq L_{i,\mathrm{max}}$ 

**Flyability Constraints** 



# ATC - 8 Aircraft Detailed Point Mass Models



Figure 4: Optimal resolution maneuver for eight-aircraft encounter ( $\eta = 20, \mu_i = 1/8, i = 1, \dots, 8$ ).



# **Nonlinear Model Predictive Control (NMPC)**



$$\min_{\mathbf{u}} \sum_{\mathbf{u}} \|y(t) - y^{\text{sp}}\|_{Q^{y}} + \sum_{\mathbf{u}} \|\mathbf{u}(t^{k}) - \mathbf{u}(t^{k-1})\|_{Q^{u}}$$
s.t.
$$\begin{aligned}
z'(t) &= F(z(t), y(t), \mathbf{u}(t), t) \\
0 &= G(z(t), y(t), \mathbf{u}(t), t) \\
z(t) &= z^{\text{init}}
\end{aligned}$$

Bound Constraint s

Other Constraint s



## Multi-stage ATC Problems in Real Time

#### Case study submitted by industry (Honeywell-DARPA)



#### Cooperative T33 Aircraft

$$\dot{x} = v \cos \gamma \cos \chi$$

$$\dot{y} = v \cos \gamma \sin \chi$$

$$\dot{h} = v \sin \gamma$$

$$\dot{v} = g (n_x - \sin \gamma)$$

$$0 = (v \dot{\chi} \cos \gamma) \cos \phi$$

$$-(v \dot{\gamma} + g \cos \gamma) \sin \phi$$

$$-n_h g = (v \dot{\chi} \cos \gamma) \sin \phi$$

$$+(v \dot{\gamma} + g \cos \gamma) \cos \phi$$

|           | Waypoint | Waypoint |
|-----------|----------|----------|
| Task      | Agent 1  | Agent 2  |
| Begin     | rejoin   | target   |
| Mission 1 | target   | split    |
| Mission 2 | split    | pop-up   |



# NMPC Results for Multi-stage ATC

A full time solution was computed for comparison purposes.



Full time solution

- •1807 variables
- •1546 constraints
- •85.2 CPU seconds

#### NMPC solution





# Applications of Simultaneous Dynamic Optimization (http://dynopt.cheme.cmu.edu)

#### Startup and Transient Operation

- Grade changes in LDPE processes
- Startup of Cryogenic Separation Processes
- Startup of unstable polymerization reactors
- Direct methanol fuel cell operation

#### **Batch Process Operation**

- Batch process operation of polymeric systems
- Batch distillation for brandy manufacture

#### Design of Periodic Adsorption Systems

- Pressure Swing Adsorption
- Simulated Moving Beds

#### Parameter Estimation

- Batch polymerization reactors
- Direct methanol fuel cell operation
- Source inversion for municipal water networks



Chemical Low Density Polyethylene Plant
Grade Transition Policies





# Low Density Polyethylene Plant





# Low Density Polyethylene Plant Simple Reactor Model

### Increase the molecular weight



- 220 DAEs
- 15 elements
- 3 collocation points
- 684.72 CPU s (P3)





# Low Density Polyethylene Plant Detailed Reactor Model

# Increase Molecular Weight

- negligible change in optimal policy
- added moving finite elements for accurate states and controls (constant Hamiltonian)

- **532 DAEs**
- 40 elements
- 3 collocation points
- **■** 83,845 variables
- 3728.4 CPU s (P3)





# Low Density Polyethylene Plant Savings with optimal grade transition





# What About Discrete Decisions in Dynamic Systems?

# Differential Variational Inequalities (DVIs)

- Hybrid systems with variable structures
- Differential Nash Games
- Rigid Body Mechanics

# Bilevel and Multilevel Optimization

- Economic Equilibrium Models
- Metabolic Models

# Modeling interfacial and phase phenomena

- Capillary press. by different phases
- Disappearing equilibrium phases

### MINLP Strategies

- •Introduce binary decision variables
- •Solve nonlinear optimization repeatedly for different instances of binaries
- Widely used in process design and logistics

# Complementarity Constraints $(x y = 0; x, y \ge 0)$

- •No discrete variables, single level nonlinear optimization problem
- Several ad hoc applications in RTO
- •Leads to singular system of equations
- Recent work in optimization community



# **Chemical MPCCs are not well-posed**

$$\min_{x,w,y\in\mathbb{R}} f(x,w,y)$$
 $\mathrm{s.t.} \quad h(x,w,y)=0$ 
 $w,y\geq 0$ 
 $wy=0$ 

There exist no (x, w, y) feasible to MPCC such that w, y > 0

- No strictly feasible points
- Gradients of constraints are linearly dependent
- Non-convex



Jacobian of constraints - singular at any feasible point



# **Chemical** An Interior Point approach

$$\begin{array}{lll} \mathsf{MPCC} & \mathsf{MID}(t) \\ \min_{x \in \mathbb{R}^n, w, y \in \mathbb{R}^m} & f(x, w, y) & \mathsf{Provide Interior} \\ \mathsf{s.t.} & w, y \geq 0 \\ & w^{(i)}y^{(i)} = 0 \end{array} \Rightarrow \begin{array}{ll} \mathsf{NLP}(t) \\ \min_{x \in \mathbb{R}^n, w, y \in \mathbb{R}^m} & f(x, w, y) \\ & \mathsf{s.t.} & w, y \geq 0 \\ & w^{(i)}y^{(i)} \leq t \end{array}$$

Apply Interior Point approach

$$\begin{aligned} & \min & f(x,w,y) - \mu \sum_{i=1}^m \ln(w^{(i)}) - \mu \sum_{i=1}^m \ln(y^{(i)}) \\ & \text{NLP}(t,\mu) & -\mu \sum_{i=1}^m \ln(s^{(i)}) \\ & \text{s.t.} & w^{(i)} y^{(i)} + s^{(i)} = t \end{aligned}$$

 $t \rightarrow 0$  - recover complementarity  $\mu, t \rightarrow 0$  - recover a solution of MPCC



# Chemical IPOPT-C: NLP extended to MPCCs

Interface to AMPL modeling language

Numerical testing on 140 MPECs (MacMPEC)

Column and Tray Optimization

- Binary and 5-component feed
- •Ideal thermodynamics

Start-up of distillation columns

- Batch distillation
- Cryogenic column

Modeling Capillary Pressure in Oilfield Reservoirs

Data reconciliation & Parameter estimation (DRPE) in metabolic networks



# (satisfying assumptions)





# **Yeast Fermentation for Wine-making**



- Reactor is charged with substrates
- Cell metabolism
- Metabolic products accumulate
- Cell adaptation
  - depletion of substrates
  - increase in toxicity
- Little understanding of fermentation problem fermentations
- Assume decomposition of time scales
- Metabolite accumulation in medium
- Cell metabolism
- Cell adaptation mechanisms

Enables online monitoring and control

Modeling approach of Sainz et al. (2003)



## Cellular metabolism



 $\Theta_{\text{carb}}$  Carb. +  $\theta_{\text{DNA}}$  DNA +  $\theta_{\text{RNA}}$  RNA +  $\theta_{\text{Lip.}}$  Lipids +  $\theta_{\text{Pro.}}$  Proteins  $\rightarrow$  Biomass



### Chemical Cellular metabolism

#### LP models cell metabolism

$$\begin{array}{ll} \min & d^T v \\ \text{s.t.} & A(\theta)v = r \\ & v^L \leq v \leq v^U \\ & r^L \leq r \leq r^U \end{array} \qquad \begin{array}{ll} \text{Solution provides} \\ \bullet \text{ intracellular} \\ \bullet \text{ rate of subst} \end{array}$$

Objective: biomass max. or maintenance

- intracellular reaction rates
- rate of substrate accumulation
- rate of metabolite production
- Bounds?

Given  $\theta$ , constant bounds ⇒ No change in solution Adaptation?



# **Cellular adaptation**

#### Response to single stimulus



$$\min d^T v$$

s.t. 
$$A(\theta)v = r$$
 
$$v^{L}(C) \leq v \leq v^{U}(C)$$
 
$$r^{L}(C) \leq r \leq r^{U}(C)$$

 ${\it C}$  - concn. of metabolites in medium

- Flux bound look-up tables
- Link extracellular concs.
   to cellular metabolism



# Batch Fermentation Model Switching in Objectives

Depletion of nitrogen inhibits growth

Number of metabolic rates vanish

Results in degeneracy.

Metabolic Model Switching

$$C_{\mathrm{ammonium}} > \epsilon$$

$$\begin{array}{ll} \min & d_1^T v \to \mathsf{Max.} \ \, \mathsf{biomass} \\ \mathsf{s.t.} & A_1(\theta) v = r \\ & v^L(C) \leq v \leq v^U(C) \\ & r^L(C) < r < r^U(C) \end{array}$$

$$C_{\mathsf{ammonium}} \leq \epsilon$$

min 
$$d_2^T v \rightarrow \text{Min. ATP}$$
  
s.t.  $A_2(\theta)v = r$   
 $v^L(C) \le v \le v^U(C)$   
 $r^L(C) < r < r^U(C)$ 

Handled using complementarity constraints

# Batch Fermentation: Combined Formulation





# **Batch Fermentation – Parameter estimation**

Given  $C^{\text{meas},(i)}$  for  $i \in MEAS \subseteq EXMET$ ,  $t \in TMEAS_i \subseteq [0,T]$ 

$$\min_{\theta} \sum_{i \in MEAS} \sum_{t \in TMEAS_i} (C^{(i)}(t) - C^{\mathsf{meas},(i)}(t))^2$$

s.t. 
$$\mathsf{LP}(\theta, v^L, v^U, r^L, r^U)$$
  $t \in [0, T]$ 

Flux bound defn.  $v^L(C), v^U(C), r^L(C), r^U(C)$   $t \in [0, T]$ 

$$\frac{dC^{(i)}}{dt} = r^{(i)}C_{\text{biomass}} \quad t \in [0, T], i \in EXMET$$

LPs or VIs, Flux bounds

Complementarity Constraints



### Batch Fermentation: Results with Simulated Data





# Nitrogen rich

# Nitrogen lean



Excellent fit to glucose experimental data

Model limitations lead to over-prediction of biomass data

Provides reasonably accurate model of wine fermentation



## **Batch Fermentation – Results**

(Raghunathan, Perez, Agosin & B, 2004)

| C(0)            | Nitrogen-rich | Nitrogen-lean |
|-----------------|---------------|---------------|
| Glucose         | 225           | 225           |
| Biomass         | 0.1           | 0.1           |
| Ammonium        | 1.24          | 0.165         |
| Ethanol         | 0             | 0             |
| CO <sub>2</sub> | 0             | 0             |

|                   | Nitrogen-rich | Nitrogen-lean |
|-------------------|---------------|---------------|
| # variables       | 33066         | 37328         |
| # constraints     | 26192         | 29583         |
| # complementarity | 6870          | 7740          |
| CPU time (sec.)   | 133           | 463           |

# Chemical Conclusions Chemical Conclusions

**Goal:** Nonlinear programming formulations and algorithms that expand the scope of model building, validation and optimization applications

#### **Interior Point NLP (IPOPT)**

Novel line search approach

Comprehensive open source code with extensive testing

Guaranteed convergence properties

Many dynamic optimization applications

Solved NLPs with up to 2 million variables, 5000 degrees of freedom

#### Math Programs with Complementarity Constraints (MPCCs)

Handle nested (bilevel) optimization problems

Deal with (some) discrete decisions

Wealth of discrete/continuous applications

Specialized NLP solver developed: IPOPT-C

Local solutions only, but very fast convergence



# Acknowledgements

#### Coworkers

- Juan Arrieta
- Arturo Cervantes
- Arvind Raghunathan
- Andreas Wächter

# **Funding Sources**

- CONACYT Fellowship
- UNAM Fellowship
- DARPA/Honeywell
- National Science Foundation
- ExxonMobil