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Overview 

Introduction 
• NLP Formulation for Dynamic Systems

Large Scale NLP for Dynamic Systems

• Flight Path Trajectory Planning and Control

• Grade Transitions for Polymerization Processes

Optimization Models with Complementarity Constraints

• Metabolic Flux Balances for Yeast Fermentation

Conclusions 



tf, final time
u, control variables
p, time independent parameters

t,  time
z, differential variables
y, algebraic variables

Dynamic Optimization Problem
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Dynamic Optimization Approaches

DAE Optimization Problem

Handles instabilities

Sequential Approach

Vassiliadis(1994)

Can not handle instabilities properly
Small NLP

Discretize 
controls

Collocation

Large/Sparse NLP

Apply a NLP solver

Efficient for constrained problems

Simultaneous Approach

Large NLP

Discretize all 
variables

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Multiple Shooting     

Embeds DAE Solvers/Sensitivity

Bock and Plitt (1978)
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Nonlinear Dynamic
Optimization Problem 

Collocation on
Finite Elements

Continuous variablesContinuous variables

Nonlinear Programming
Problem (NLP)

Discretized variablesDiscretized variables

Nonlinear Programming Formulation



Nonlinear Programming ProblemNonlinear Programming Problem
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Simultaneous Dynamic Optimization
(Direct Transcription)

Advantages
• Equivalence of NLP solutions and Euler-Lagrange conditions

• Convergence rates to Euler-Lagrange conditions

• Treatment of open-loop unstable systems

• Treatment of path constraints

• Exploit sparsity and structure

Challenges

• Accurate state and control profiles
– Moving finite elements
– Formulations with embedded error criteria

• Solution of large-scale NLPs
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Large Scale NLP Algorithms
Motivation: Improvement of Successive Quadratic Programming 
as Cornerstone Algorithm 

Î process optimization for design, control and operations

Evolution of NLP Solvers:

1981-87: Flowsheet optimization 
over 100 variables and constraints  

1988-98: Static Real-time optimization
over 10 000 variables and constraints

1999-02: Simultaneous dynamic optimization
over 1 000 000 variables and constraints

SQP rSQP IPOPT

rSQP++

Current: Tailor structure, architecture and problems
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IPOPT Algorithm – Features
Line Search Strategies for Globalization

- l2 exact penalty merit function

- augmented Lagrangian merit function

- Filter method (adapted and extended from Fletcher and Leyffer)

Hessian Calculation 

- BFGS (full/LM and reduced space)

- SR1 (reduced space)

- Exact full Hessian (direct)

- Exact reduced Hessian (direct)

- Preconditioned CG 

Algorithmic Properties

– Globally and superlinearly convergent (see Wächter and B., 2005a,b,c)

– Weaker assumptions than other codes

– Easily tailored to different problem structures 

Freely Available

– CPL License and COIN-OR distribution 

– new version recently rewritten in C++

– Solved on thousands of test problems and applications

– Code avaliable at http://www.coin-or.org
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Comparison of NLP Solvers: Data Reconciliation
(Poku, Kelly, B. (2004))
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Air Traffic Control – 3D Conflict Resolution
(Raghunathan et al., (2004)

Cooperative Case (modeled in AMPL and MATLAB)

Simple kinematic models
• Initialization
• Addressing nonconvexity

Point mass aircraft dynamics – rigorous representation
• Dynamic Models Essential 
• Initialization

Examples
• 8 aircraft
• Test problem summary
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Air Traffic Control – Simple Kinematic Model

where:

Note nonconvexity in constraints

Equations of Motion

Protection Zone
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Air Traffic Control – Point Mass Model
Detailed Flyability Behavior

Equations of Motion

Detailed Flight Equations

Protection Zone

Flyability Constraints
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ATC - 8 Aircraft
Detailed Point Mass Models

7008 variables, 5472 constraints

Analytic approaches with kinematic model have no 
guarantee of flyability

Flyability conditions satisfied by NLP with current 
approach

Solved with IPOPT – 360 CPU sec (Pentium III)

With Nofly zone constraints – 450 CPU sec. 
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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points

( )
( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
=′

NMPC Estimation and Control

sConstraintOther 

sConstraint Bound

)(
)),(),(),((0

)),(),(),(()(
..

||))||||)(||min

init

1sp

ztz
tttytzG

tttytzFtz
ts

yty uy Q

kk

Q

=
=

=′

−+−∑ ∑ −

u

u

u(tu(t
u

NMPC Subproblem

Why NMPC?

ν Track a profile

ν Severe nonlinear dynamics (e.g, 
sign changes in gains)

ν Operate process over wide range 
(e.g., startup and shutdown)
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Multi-stage ATC Problems in Real Time

Case study submitted by industry (Honeywell-DARPA)

Cooperative T33 Aircraft
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NMPC Results for Multi-stage ATC

A full time solution was computed for 
comparison purposes. Full time solution

•1807 variables

•1546 constraints

•85.2 CPU seconds

NMPC solution
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Applications of Simultaneous Dynamic 
Optimization (http://dynopt.cheme.cmu.edu)

Startup and Transient Operation
• Grade changes in LDPE processes
• Startup of Cryogenic Separation Processes
• Startup of unstable polymerization reactors
• Direct methanol fuel cell operation

Batch Process Operation
• Batch process operation of polymeric systems
• Batch distillation for brandy manufacture

Design of Periodic Adsorption Systems
• Pressure Swing Adsorption
• Simulated Moving Beds

Parameter Estimation
• Batch polymerization reactors
• Direct methanol fuel cell operation
• Source inversion for municipal water networks
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Low Density Polyethylene Plant
Grade Transition Policies
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LDPE

Butane

Purge

Compression

Reactor

xButane

Low Density Polyethylene Plant

PLAPIQUI, Argentina
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Increase the molecular weight

•• 220 DAEs 

• 15 elements

• 3 collocation points

• 684.72 CPU s (P3)
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Low Density Polyethylene Plant
Detailed Reactor Model

� 532 DAEs 
� 40 elements
� 3 collocation points
� 83,845 variables
� 3728.4  CPU s (P3)

Increase Molecular Weight
• negligible change in optimal policy
• added moving finite elements for accurate states and controls
(constant Hamiltonian) 
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Low Density Polyethylene Plant
Savings with optimal grade transition

Time to reach new
steady state

LDPE out of
specifications (Ton)

LDPE out of
specifications ($)

Base case Optimized

1.4 hr 15.4 Ton $7,700



25

What About Discrete Decisions in Dynamic 
Systems?

Differential Variational
Inequalities (DVIs)

• Hybrid systems with variable 
structures

• Differential Nash Games
• Rigid Body Mechanics

Bilevel and Multilevel 
Optimization

• Economic Equilibrium Models
• Metabolic Models

Modeling interfacial and phase 
phenomena

• Capillary press. by different phases
• Disappearing equilibrium phases

MINLP Strategies
•Introduce binary decision variables

•Solve nonlinear optimization repeatedly 

for different instances of binaries
•Widely used in process design and 

logistics

Complementarity Constraints 
(x y = 0; x, y � 0)

•No discrete variables, single level 
nonlinear optimization problem
•Several ad hoc applications in RTO
•Leads to singular system of equations
•Recent work in optimization community
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MPCCs are not well-posed

Jacobian of constraints -
singular at any feasible point
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An Interior Point approach
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IPOPT-C: NLP extended to MPCCs

Interface to AMPL modeling language

Numerical testing on 140 MPECs (MacMPEC)

Column and Tray Optimization

•Binary and 5-component feed

•Ideal thermodynamics

Start-up of distillation columns

•Batch distillation

•Cryogenic column

Modeling Capillary Pressure in Oilfield Reservoirs

Data reconciliation & Parameter estimation (DRPE) in 
metabolic networks
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IPOPT-C on MacMPEC problems 
(satisfying assumptions)
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Yeast Fermentation for Wine-making

CELL − METABOLIC

              Rxns.

PYRUVIC ACID

SUCCINIC ACID

GLYCEROL
ETHANOL

BIOMASS

CO_2

NITROGEN SOURCE

CARBON SOURCE

CARBOHYDRATES

LIPIDS

RNA

 DNA

PROTEIN

• Reactor is charged with substrates
• Cell metabolism
• Metabolic products accumulate
• Cell adaptation

• depletion of substrates
• increase in toxicity

• Little understanding of fermentation 
problem fermentations

• Assume decomposition of time scales

• Metabolite accumulation in medium 
• Cell metabolism
• Cell adaptation mechanisms

Modeling approach of Sainz et al. (2003)

Enables online 
monitoring and control
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Cellular metabolism

  Glucose

Glucose−6−P Carbohydrates PPP Biomass

CO_2

Fructose−6−P

Dihydroxyacetone−P Glyceraldehyde−3−P

Glycerol−3−P

Glycerol

3−P−Glycerate Serine Biomass

Phosphoenolpyruvate

  Pyruvate      Oxaloacetate

Aspartate

Biomass

Oxaloacetate

Malate

Succinate

Isocitrate

2−Oxoglutarate

CO_2

CO_2

CO_2

Cytosol

NADHNADH

Acetaldehyde

     Ethanol

CO_2

Acetate

Acetyl−CoA

   Biomass

Glutamate Glutamine

     Mitochondria

carb Carb. + DNA DNA + RNA RNA + Lip. Lipids + Pro. Proteins Æ Biomass

• Given r, m < n – underdetermined
• Measure concentration not r

– Biomass parameters
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Cellular metabolism

LP models cell metabolism

Solution provides
• intracellular reaction rates
• rate of substrate accumulation
• rate of metabolite production
• Bounds ?

Given , constant bounds
⇒ No change in solution

Adaptation ?

Objective : biomass max. or maintenance
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Cellular adaptation

Æ
x

x

x

x

Cethanol

vL
ATP vL

ATP

Cethanol

Response to single stimulus

• Flux bound look-up tables

• Link extracellular concs.
to cellular metabolism
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Batch Fermentation Model
Switching in Objectives

Depletion of nitrogen inhibits growth

Number of metabolic rates vanish

Results in degeneracy.

Metabolic Model Switching

Handled using complementarity constraints
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Batch Fermentation : Combined Formulation

cbio

[C](0)

Calculate vlb([C](t))
and vub([C](t))

Solve LP modeling
cell metabolism

Integrate the DAE for 
extracellular metabolites

vlb, vub

r[C](t)

t

[C](t)

*

* *
*

* *

Measurements

Table Look-ups for 
influence of ext. 

metabolites 

Changing LP 
objectives with 

depleting 
substrates

• Large-scale dynamic parameter estimation problem 
• Many time-dependent complementarity constraints
• Solved as single large-scale nonlinear program
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Batch Fermentation – Parameter 
estimation

LPs or VIs, 
Flux bounds

Complementarity
Constraints
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Batch Fermentation :  Results with Simulated Data



38

Nitrogen rich Nitrogen lean
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Excellent fit to glucose experimental data

Model limitations lead to over-prediction of biomass data

Provides reasonably accurate model of wine fermentation
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Batch Fermentation – Results
(Raghunathan, Perez, Agosin & B, 2004)

00CO2

00Ethanol

0.1651.24Ammonium

0.10.1Biomass

225225Glucose

Nitrogen-leanNitrogen-richC(0)

463133CPU time (sec.)

77406870# complementarity

2958326192# constraints

3732833066# variables

Nitrogen-leanNitrogen-rich



40

Conclusions

Goal: Nonlinear programming formulations and algorithms that expand the 
scope of model building, validation and optimization applications

Interior Point NLP (IPOPT)

Novel line search approach

Comprehensive open source code with extensive testing

Guaranteed convergence properties

Many dynamic optimization applications

Solved NLPs with up to 2 million variables, 5000 degrees of freedom

Math Programs with Complementarity Constraints (MPCC s)

Handle nested (bilevel) optimization problems

Deal with (some) discrete decisions

Wealth of discrete/continuous applications

Specialized NLP solver developed: IPOPT-C

Local solutions only, but very fast convergence
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