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Good Software/Algorithms to Solve NLP

Find Variables xT = (x1, . . . , xn)

to minimize the Objective

F(x)

subject to Constraints

cL ≤ c(x) ≤ cU.
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Want to Solve Optimal Control Problem

Find Control Functions u(t) to minimize

J =
∫ tF

tI
w [y(t), u(t), t] dt.

subject to constraints over the domain tI ≤ t ≤ tF

ẏ = f [y(t), u(t), t]

0 ≤ g[y(t), u(t), t]

and boundary conditions
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So What’s the Rub?

The NLP Works with a Finite Set of Variables x and

Functions F(x), c(x)

...

But Optimal Control is an Infinite Dimensional Problem;

i.e. the functions u(t) and y(t)

How do we formulate the problem?
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Shooting Methods

“Eliminate” Infinite Dimensional Problem by solving

ẏ = f [y(t), u(t), t] and/or
ẏ = f [y(t), u(t), t]
0 = g[y(t), u(t), t]

The NLP involves the Finite Set of Boundary Values

BVP can be very nonlinear

ODE or DAE can be very unstable

ODE error control at suboptimal points—inefficient

Path inequalities cumbersome (impractical?)

Shooting for Control ⇐⇒ GRG for NLP
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Discretization Methods

Variables

[y(t), u(t)] x = [y1,u1, . . . ,yM,uM ]� .

Constraints

ẏ = f [y(t), u(t), t] yk+1 = yk +
hk

2

(
fk + fk+1

)
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Maximum Crossrange Reentry

Choose steering u(t) to maximize crossrange and satisfy

ẏ = f [y(t), u(t), t] Eqn. Motion
0 ≤ g[y(t), u(t), t] Heat Limit
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An Experiment

• Use your favorite NLP to solve the discrete problem using

– Trapezoidal discretization with

– 50 equally spaced grid points.

• Numerically integrate the ODE’s using the “solution”

û(t), i.e.

ẏ = f [y(t), û(t), t]

What happens?
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Trajectory Error

Altitude . . . . . . . . . . . . . . . . . . . . (93343 ft, not 80000)

Velocity . . . . . . . . . . . . . . . . . . . . . (2908 fps, not 2500)

Flight Path Angle . . . . . . . . . . . . . (-9.52 deg, not -5)
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Heat Constraint Error

Bad News!
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Observation 1

Question: Is a good NLP all you need to solve

optimal control problems?

Answer: NO! Discretization Error Must Be Addressed.
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An Optimal Control Algorithm

Direct Transcription Transcribe the optimal control prob-

lem into a nonlinear programming (NLP) problem by dis-

cretization;

Sparse Nonlinear Program Solve the sparse NLP

Mesh Refinement Assess the accuracy of the approxima-

tion (i.e. the finite dimensional problem), and if necessary

refine the discretization, and then repeat the optimization

steps.

SNLP: Sequential Nonlinear Programming
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Sequential Nonlinear Programming

Coarse Grid

xc = [y1,u1, . . . ,ym,um]�

Fine Grid

xf = [y1,u1, . . . ,yM,uM ]�

NLP problem size grows—typically M > m

Question: How do we efficiently solve a sequence of

NLP’s?

Answer: Use coarse grid information to “Hot Start”

fine grid NLP
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Estimating Variables for SNLP

SQP Algorithm

high order interpolation of coarse grid solution

consistent with discretization formula

(e.g. collocation polynomial)

very good guess

Interior Point Algorithm

must be feasible ⇐⇒ barrier algorithm perturbs guess

not consistent with coarse grid discretization formula

may be a poor guess
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Estimating Multipliers for SNLP

SQP Algorithm

use “cold start” (first order) estimates based on variables

Option: interpolate coarse grid (adjoints) but
NLP Multipliers may not converge to adjoints and/or

discretized path constraints may violate LICQ
(linear independent constraint qualification)

good active set guess ⇐⇒ more efficient

Interior Point Algorithm

must be dual feasible ⇐⇒ barrier algorithm perturbs guess

must be consistent with initial barrier parameter

“active set” not an issue

may be a poor guess
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Linear Algebra for SNLP

SQP Algorithm

active sets and iterative methods not practical

direct factorization limits largest problem size

Interior Point Algorithm

iterative methods possible

coarse to fine grid preconditioners

potential for very large problem size
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Performance Comparison

SQP Algorithm

k M NGC NHC NFE ε Time (sec)
1 50 27 18 901 8×10−1 3.4
2 66 14 12 566 8×10−2 2.4
3 66 10 8 386 3×10−2 4.7
4 95 19 17 791 6×10−3 13.0
5 100 22 20 926 1×10−3 15.2
6 105 9 6 313 1×10−4 8.0
7 110 4 2 116 2×10−5 6.0
8 219 10 8 386 4×10−6 35.5
9 228 3 1 71 7×10−7 19.5
10 455 5 3 161 4×10−8 81.7

Total 455 123 95 4617 189.

Barrier Algorithm

k M NGC NHC NFE ε Time (sec)
1 50 74 69 3289 7×10−2 8.3
2 86 10 3 246 5×10−3 1.5
3 86 29 27 4679 9×10−5 19.4
4 171 9 5 978 3×10−6 9.3
5 323 44 40 7001 1×10−7 125.
6 573 19 16 2824 6×10−8 102.

Total 573 185 160 19017 266.
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Analysis of Performance

Expected Behavior
As Mesh Size Increases . . . . . . . . . . . . . . . . . . . . . .

• SQP becomes more efficient because it exploits

a good guess

• Barrier method does not exploit good guess

Unexpected Behavior
Why do SQP and Barrier methods have

Different Number

of Refinement Iterations?
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SQP vs Barrier Coarse Grid Solution

Final Condition SQP Barrier

Time (sec) 2153.85 2186.11

Altitude (ft) 80000.0 80000.0

Longitude (deg) 50.9380 51.6154

Latitude (deg) 30.3827 30.5691

Velocity (fps) 2500.00 2500.00

Flight path angle (deg) -5.00000 -5.00000

Azimuth (deg) 11.5361 7.64752

Angle of Attack (deg) 5.44440 17.4327

Bank Angle (deg) -90.0000 -2.04101

Same NLP Problem (Trapezoidal, 50 grid points)

Different (Wrong) Answers!
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The State of Affairs

Must Address Interaction Between Optimization

and Discretization

Nonunique, Local Solutions for the Same

Discrete Subproblem

SQP Algorithm Can Exploit Good Guess

Barrier Algorithm Can Exploit Iterative Linear

Algebra
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