BIMODULES OVER SIMPLE FINITE-DIMENSIONAL

JORDAN SUPERALGEBRAS

Consuelo Martínez López

Workshop on Nonassociative Algebras

Toronto, 12-14 May 2005

SUPERALGEBRA : $A=A_{\bar 0}+A_{\bar 1},\ A_{\bar i}\cdot A_{\bar j}\subseteq A_{i\bar+j}$ a Z/2Z-graded algebra

EX. V vector space of countable dimension,

$$G(V) = G(V)_{\bar{0}} + G(V)_{\bar{1}}$$
 Grassmann algebra over V ,

$$G(A) = A_{\bar{0}} \otimes G(V)_{\bar{0}} + A_{\bar{1}} \otimes G(V)_{\bar{1}} \leq A \otimes G(V)$$

Grassmann enveloping algebra of A

 \mathcal{V} a variety of algebras (associative, Lie, Jordan,...)

DEF.
$$A = A_{\bar{0}} + A_{\bar{1}}$$
 is a \mathcal{V} -superalgebra if $G(A) \in \mathcal{V}$.

 $J=J_{ar{0}}+J_{ar{1}}$ is a Jordan superalgebra if it satisfies

SJ1. Supercommutativity
$$a \cdot b = (-1)^{|a||b|} b \cdot a$$
,

SJ2. Super Jordan identity

$$(a \cdot b) \cdot (c \cdot d) + (-1)^{|b||c|} (a \cdot c) \cdot (b \cdot d) +$$

$$(-1)^{|b||d|+|c||d|}(a \cdot d) \cdot (b \cdot c) =$$

$$((a \cdot b) \cdot c) \cdot d + (-1)^{|c||d|+|b||c}((a \cdot d) \cdot c) \cdot b +$$

$$(-1)^{|a||b|+|a||c|+|a||d|+|c||d|}((b \cdot d) \cdot c) \cdot a.$$

JORDAN SUPERALGEBRAS

 $A = A_{\bar{0}} + A_{\bar{1}}$ associative superalgebra

 $A^{(+)}=(A,a\cdot b=\frac{1}{2}(ab+(-1)^{|a||b|}ba)$ Jordan superalgebra

 $J=J_{\bar 0}+J_{\bar 1}\leq A^{(+)}$ special. Otherwise exceptional

(A) $A^{(+)}$, $A = M_{m+n}(F)$ full linear superalgebra

(Q)
$$A^{(+)}$$
, $A = \{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} | a, b \in M_n(F) \}$

If $\star: A \to A$ is an involution : $(a^{\star})^{\star} = a$, $(ab)^{\star} = (-1)^{|a||b|} b^{\star} a^{\star}$.

$$H(A, \star) = \{ a \in A | a^{\star} = a \} \le A^{(+)}$$

(**P**)
$$A = M_{n+n}(F), \star : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} d^T & -b^T \\ c^T & a^T \end{pmatrix},$$

$$H(A,\star) = \left\{ \begin{pmatrix} a & b \\ c & a^T \end{pmatrix} \mid a, b, c \in M_n(F), \ b^T = -b, \right.$$

$$c^T = c\}.$$

(D) A Superalgebra of a superform

 $V=V_{\bar 0}+V_{\bar 1},<,>:V\times V\to F$ a supersymmetric bilinear form

$$J = F1 + V = (F1 + V_{\bar{0}}) + V_{\bar{1}}, (\alpha 1 + v)(\beta 1 + w) = (\alpha \beta + \langle v, w \rangle)1 + (\alpha w + \beta v).$$

$$(\mathbf{D_t}) \ J_t = (Fe_1 + Fe_2) + (Fx + Fy), \ t \neq 0$$

$$e_i^2 = e_i, e_1 e_2 = 0, e_i x = \frac{1}{2}x, e_i y = \frac{1}{2}y, [x, y] = e_1 + te_2.$$

(J) All simple Jordan algebras

(F) The 10-dimensional exceptional Kac superalgebra

$$K_{10} = [(Fe_1 + \sum_{i=1}^{4} Fv_i) + Fe_2] + (\sum_{i=1}^{2} Fx_i + Fy_i)$$

$$e_i^2 = e_i, \quad e_1 e_2 = 0, \quad e_1 v_i = v_i, e_2 v_i = 0, v_1 v_2 = 2e_1 = v_3 v_4,$$

$$e_i x_j = \frac{1}{2} x_j, \quad e_i y_j = \frac{1}{2} y_j, \quad i, j = 1, 2$$

$$y_1 v_1 = x_2, \quad y_2 v_1 = -x_1, \quad x_1 v_2 = -y_2, \quad x_2 v_2 = y_1,$$

$$x_2 v_3 = x_1, \quad y_1 v_3 = y_2, \quad x_1 v_4 = x_2, \quad y_2 v_4 = y_1,$$

$$[x_i, y_i] = e_1 - 3e_2, \quad [x_1, x_2] = v_1, \quad [y_1, y_2] = v_2,$$

$$[x_1, y_2] = v_3, \quad [x_2, y_1] = v_4.$$

(K) The 3-dimensional Kaplansky superalgebra

$$K_3 = Fe + (Fx + Fy),$$
 $e^2 = e,$ $ex = \frac{1}{2}x,$ $ey = \frac{1}{2}y,$ $[x, y] = e.$

Theorem. (Kac 77, Kantor 89) A simple finite dimensional Jordan superalgebra over an algebraically closed field of zero characteristic is isomorphic to one of the superalgebras A, BC, D, P, Q, D_t , F, K, J listed above or to a superalgebra obtained by the Kantor-double process

Theorem. (Racine, Zelmanov, J. of Algebra 270, 2003) Every simple Jordan superalgebra over an algebraically closed field F, chF = p > 2, with its even part semisimple is isomorphic to one of the superalgebras mentioned above + Some additional examples in char 3

Jordan Superalgebras defined by Brackets

 $\Gamma = \Gamma_{\bar{0}} + \Gamma_{\bar{1}}$ an associative commutative superalgebra $\{,\}: \Gamma \times \Gamma \to \Gamma \text{ a Poisson bracket if } \{\Gamma_{\bar{i}}, \Gamma_{\bar{j}}\} \subseteq \Gamma_{i\bar{+}j} \text{ and } (1) (\Gamma, \{,\}) \text{ is a Lie superalgebra,}$

(2) $\{ab, c\} = a\{b, c\} + (-1)^{|b||c|}\{a, c\}b$ (Leibniz identity)

Kantor Double Superalgebra

$$J = \Gamma + \Gamma x$$
, $a(bx) = (ab)x$, $(bx)a = (-1)^{|a|}(ba)x$, $(ax)(bx) = (-1)^{|b|}\{a,b\}$, $J_{\bar{0}} = \Gamma_{\bar{0}} + \Gamma_{\bar{1}}x$, $J_{\bar{1}} = \Gamma_{\bar{1}} + \Gamma_{\bar{0}}x$.

Theorem. (Kantor 1992) Let $\{,\}$ be a Poisson bracket $\implies J = \Gamma + \Gamma x$ is a Jordan superalgebra.

Kantor superalgebra

$$\Gamma = \text{Grassman algebra on } \xi_1, \dots, \xi_n$$

$$\Gamma = \Gamma_{\bar{0}} + \Gamma_{\bar{1}}, \ \{f, g\} = \sum_{i=1}^n (-1)^{|f|} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \xi_i}$$

$$J = \Gamma + \Gamma x \begin{cases} n = 1 & J \simeq D(-1) \\ n \geq 2 & J_{\bar{0}} & is \ not \ semisimple \end{cases}$$

CHENG-KAC JORDAN SUPERALGEBRAS

Z unital associative commutative algebra, $d:Z\to Z$ a derivation,

 $CK(Z,d) = J_{\bar{0}} + J_{\bar{1}}, \ J_{\bar{0}} = Z + \sum_{i=1}^{3} w_{i}Z, \ J_{\bar{1}} = xZ + \sum_{i=1}^{3} x_{i}Z$ free Z-modules of rank 4.

Even part $w_i w_j = 0, i \neq j, w_1^2 = w_2^2 = 1, w_3^2 = -1,$

Notation: $x_{i \times i} = 0$, $x_{1 \times 2} = -x_{2 \times 1} = x_3$ $x_{1 \times 3} = -x_{3 \times 1} = x_2$, $-x_{2 \times 3} = x_{3 \times 2} = x_1$.

Module action $f, g \in Z$ $\frac{g \quad w_j g}{xf x(fg) \quad x_j(fg^d)}$ $\frac{xf x_i(fg) \quad x_i(fg)}{x_i f x_i(fg) \quad x_i \times f}$

Bracket on M $\frac{xg}{xf} \frac{x_jg}{f^dg - fg^d} \frac{x_jg}{-w_j(fg)}$ $\frac{x_jf}{x_if} \frac{w_i(fg)}{w_i(fg)} = 0$

CK(Z,d) is simple \iff Z does not contain proper d-invariant ideals.

$$B(m) = F[a_1, \dots, a_m \mid a_i^p = 0]$$

$$\mathbf{B}(\mathbf{m}, \mathbf{n}) = \mathbf{B}(\mathbf{m}) \otimes \mathbf{G}(\mathbf{n}) \qquad \mathbf{G}(\mathbf{n}) = <\mathbf{1}, \xi_1, \dots, \xi_n >$$

Theorem. (M., Zelmanov, J. of Algebra 236, 2001)

Let $J=J_{\bar 0}+J_{\bar 1}$ be a finite dimensional simple unital Jordan superalgebra over an algebraically closed field F, $\mathrm{ch} F=p>2,\,J_{\bar 0}$ not semisimple. Then

 $\mathbf{J} \simeq \mathbf{B}(\mathbf{m}, \mathbf{n}) + \mathbf{B}(\mathbf{m}, \mathbf{n})\mathbf{x}$ a Kantor double or $\mathbf{J} \simeq \mathbf{CK}(\mathbf{B}(\mathbf{m}), \mathbf{d}).$

SPECIALITY

King, McCrimmon (J. Algebra 149, 1995)

- The Kantor Double of a bracket of vector field type ($\{a,b\} = a'b ab'$ ' a derivation) is special.
- The Kantor Double of $\{f,g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$ on F[x,y] is exceptional.

Shestakov (1993)

- A Kantor Double of Poisson bracket $<,>:\Gamma\times\Gamma\to$ Γ is special iff $<<\Gamma,\Gamma>,\Gamma>=(0)$.
- A Kantor Double of a Poisson bracket is i-special (homomorphic image of a special superalgebra)

Theorem. (M., Shestakov, Zelmanov) A Kantor Double of a Jordan bracket is i-special.

Assumption: $J = \Gamma + \Gamma x$ does not contain $\neq (0)$ nilpotent ideals

- If $\Gamma = \Gamma_{\bar{0}}$ then J is special iff <,> is of vector field type.
- If $\Gamma_{\bar{1}}\Gamma_{\bar{1}} \neq (0)$ (at least 2 Grassmann variables) then J is exceptional.
- If $\Gamma = \Gamma_{\bar{0}} + \Gamma_{\bar{0}}\xi_1$, $<\Gamma_{\bar{0}}, \xi_1> = (0)$, $<\xi_1, \xi_1> = -1$ then J is special iff $<,>:\Gamma_{\bar{0}}\times\Gamma_{\bar{0}}\to\Gamma_{\bar{0}}$ is of vector field type.

Theorem. (M., Shestakov, Zelmanov) The Cheng-Kac superalgebra CK(Z, d) is special

The embedding extends McCrimmon embedding for vector field type brackets.

 $W = < R(a), a \in Z, d > \text{- differential operators on } Z$

$$R = R_{\bar{0}} + R_{\bar{1}} = \mathcal{M}_{4\times4}(W)$$

Let J be a special Jordan superalgebra.

A specialization $u:J\longrightarrow U$ into an associative algebra U is said to be universal if U=< u(J)> and for an arbitrary specialization $\varphi:J\to A$ there exists a homomorphism of associative algebras $\xi:U\to A$ such that $\varphi=\xi\cdot u$.

The algebra U is called the universal associative enveloping algebra of J.

An arbitrary special Jordan superalgebra contains a unique universal specialization $u: J \to U$.

U is equipped with a superinvolution * having all elements from u(J) fixed, i.e., $u(J) \subseteq H(U, *)$.

We call a special Jordan superalgebra reflexive if u(J) = H(U, *).

Theorem. $U(M_{m,n}^{(+)}(F)) \simeq M_{m,n}(F) \oplus M_{m,n}(F)$ for $(m,n) \neq (1,1); \ U(Q^{(+)}(n)) = Q(n) \oplus Q(n), \ n \geq 2;$ $U(osp(m,n)) \simeq M_{m,n}(F), \ (m,n) \neq (1,2); \ U(P(n)) \simeq M_{n,n}(F), \ n \geq 3.$

Theorem. The embedding σ of the Cheng-Kac superalgebra is universal, that is, $U(CK(Z,D)) \cong M_{2,2}(W)$. The restriction of the embedding u (see above) to P(2) is a universal specialization; $U(P(2)) \simeq M_{2,2}(F[t])$, where F[t] is a polynomial algebra in one variable.

The Jordan superalgebra of a superform

Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a Z/2Z-graded vector space, dim $V_{\bar{0}} = m$, $dim V_{\bar{1}} = 2m$; let $<,>: V \times V \to F$ be a supersymmetric bilinear form on V. The universal associative enveloping algebra of the Jordan algebra $F1 + V_{\bar{0}}$ is the Clifford algebra $Cl(m) = <1, e_1, \ldots, e_m | e_i e_j + e_j e_i = 0, i \neq j, e_i^2 = 1 >$.

Consider the Weyl algebra $W_n = \langle 1, x_i, y_i, 1 \leq i \leq n | [x_i, y_j] = \delta_{ij}, [x_i, x_j] = [y_i, y_j] = 0 \rangle$. Assuming $x_i, y_i, 1 \leq i \leq n$ to be odd, we make W_n a superalgebra. The universal associative enveloping algebra of F1+V is isomorphic to the (super)tensor product $Cl(m) \otimes_F W_n$.

Specializations of $M_{1,1}(F)$

Theorem. $U(M_{1,1}(F)) \simeq \begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$. The mapping

$$u: \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \rightarrow \begin{pmatrix} \alpha_{11} & \alpha_{12} + \alpha_{21}a^{-1}z_2 \\ \alpha_{12}z_1 + \alpha_{21}a & \alpha_{22} \end{pmatrix}$$

is a universal specialization.

Here a is root of the equation $a^2 + a - z_1 z_2 = 0$, $A = F[z_1, z_2] + F[z_1, z_2]a$ is a subring of K a quadratic extension of $F(z_1, z_2)$ generated by a and $M_{12} = F[z_1, z_2] + F[z_1, z_2]a^{-1}z_2$, $M_{21} = F[z_1, z_2]z_1 + F[z_1, z_2]a$ are subspaces of K.

Let V be a Jordan bimodule over the (super)algebra J

V is a one-sided bimodule if $\{J, V, J\} = (0)$.

Then, the mapping $a \to 2R_V(a) \in End_FV$ is a specialization.

The category of one-sided bimodules over J is equivalent to the category of right (left) U(J)-modules.

Let e be the identity of J and let $V = \{e, V, e\} + \{1 - e, V, e\} + \{1 - e, V, 1 - e\}$ be the Peirce decomposition. Then $\{e, V, e\}$ is a unital bimodule over J, that is, e is an identity of $\{e, V, e\} + J$. The component $\{1 - e, V, e\}$ is a one-sided module, that is, $\{J, \{1 - e, V, e\}, J\} = (0)$.

Finally, $\{1 - e, V, 1 - e\}$ is a bimodule with zero multiplication.

Remark One sided finite dimensional Jordan bimodules over $M_{1,1}(F)$ are not necessarily completely reducible.

Theorem. (C.M. and I. Shestakov) If V is a unital bimodule over $M_{1,1}(F) \simeq D_{-1}$ and v is an element in $\{e_1, V, e_1\}$ (similarly in $\{e_1, V, e_1\}$) then the linear span of v, w = (vx)y, vx, vy is a subbimodule of V.

The multiplication is given by:

$$e_1v = v, e_2v = 0, vx, vy$$

$$e_1w = (\frac{1}{2} + \gamma)v$$
, $e_2w = w + (\frac{-1}{2} + \gamma)v$, $wx = 2\gamma vx - \alpha vy$, $wy = \beta vx$.

$$e_1vx = \frac{1}{2}vx, \ e_2vx = \frac{1}{2}vx, \ (vx)x = \alpha v, \ (vx)y = w$$

$$e_1 vy = \frac{1}{2}vy, \ e_2 v = \frac{1}{2}vy, \ (vy)x = 2\gamma v - w, \ (vy)y = \beta v$$

with α , β and γ elements in F.

- If $\alpha\beta + \gamma^2 \frac{1}{4} = 0$ the previous module is indecomposable, but not irreducible.
- A unital irreducible bimodule over D_{-1} has either dimension 4 or dimension 2

Specializations of superalgebras D(t)

Clearly, $D(-1) \cong M_{1,1}(F)$, $D(0) \cong K_3 \oplus F1$, D(1) is a Jordan superalgebra of a superform.

Let osp(1,2) denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x, y be the standard basis of the odd part of osp(1,2).

Theorem. (I. Shestakov) The universal enveloping algebra of K_3 is isomorphic to $U(osp(1,2)/id([x,y]^2 - [x,y]))$, where U(osp(1,2)) is the universal associative enveloping algebra of osp(1,2) and $id([x,y]^2 - [x,y]))$ is the ideal of U(osp(1,2)) generated by $[x,y]^2 - [x,y]$.

Clearly, if $\operatorname{ch} F = 0$ then K_3 does not have nonzero specializations that are finite dimensional algebras. If $\operatorname{ch} F = p > 0$ then K_3 has such specializations. For example, $K_3 \subseteq CK(F[a|a^p=0],d/da)$.

$$t \neq -1, 0, 1$$

Theorem. (I. Shestakov) The universal enveloping algebra of D(t) is isomorphic to $U(osp(1,2)/id([x,y]^2 - (1+t)[x,y]+t)$.

Corollary. If chF = 0 then all finite dimensional onesided bimodules over D(t) are completely reducible.

Theorem. (C.M and E. Zelmanov). Let chF = 0. Then:

- a) If $\frac{t=-m}{m+1}$, $m \geq 1$, then D(t) has two irreducible finite dimensional one sided bimodules $V_1(t)$ and $V_1(t)^{op}$.
- b) If $\frac{t=-m+1}{m}$, $m \ge 1$, then D(t) has two irreducible finite dimensional one sided bimodules $V_2(t)$ and $V_2(t)^{op}$.
- c) If t can not be represented as $\frac{-m}{m+1}$ or $\frac{-m+1}{m}$, where m is a positive integer, then D(t) does not have nonzero finite dimensional specializations.

Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a finite dimensional irreducible right module over the associative superalgebra U(D(t)). The elements $E = \frac{2}{1+t}x^2$, $F = -\frac{2}{1+t}y^2$ and $H = -\frac{2}{1+t}(xy+yx)$ span the Lie algebra sl_2 .

Let's consider an infinite dimensional Verma type module $\tilde{V} = \tilde{v}U(D(t))$ defined by one generator \tilde{v} and the relations: $\tilde{v}H = \lambda \tilde{v}$, $\tilde{v}e_1 = \tilde{v}$, $\tilde{v}y^2 = 0$.

Then the system of relators of \tilde{V} : $\tilde{v}e_1 - \tilde{v} = 0$, $\tilde{v}y^2 = 0$, $\tilde{v}yx - t\tilde{v} = 0$ + relators of D(t): $e_1^2 - e_1 = 0$, $xe_1 + e_1x - x = 0$, $ye_1 + e_1y - y = 0$, $xy - yx - t - (1 - t)e_1 = 0$. Hence the irreducible elements \tilde{v} , $\tilde{v}y$, $\tilde{v}x$, $\tilde{v} \geq 1$ form a basis of this module that we will denote as $\tilde{V}_1(t)$.

If $\tilde{v}y = 0$ then the irreducible elements $\tilde{v}, \tilde{v}x^i, i \geq 1$ form a basis of the module that will be denoted as $V_2(t)$.

Changing parity we get two new bimodules $\tilde{V}_1(t)^{op}$ and $\tilde{V}_2(t)^{op}$.

Unital bimodules over D_t charF = 0

Maria Trushina (also in case char F = p)

Definition. For $\sigma \in \{\bar{0}, \bar{1}\}$, $i \in \{0, 1, \frac{1}{2}\}$, $\lambda \in F$, a Verma module $V(\sigma, i, \lambda)$ is a unital D_t -bimodule presented by one generator v of parity σ and the relations: $vR(e_1) = iv$, vR(y) = 0, $vH = \lambda v$.

Notice that $V(\sigma, i, \lambda)^{op} = V(1 - \sigma, i, \lambda)$

- 1. For an arbitrary $\lambda \in F$, $V(\sigma, \frac{1}{2}, \lambda) \neq (0)$.
- 2. $V(\sigma, 1, \lambda) = (0)$ unless $\lambda = \frac{-2}{t+1}$.
- 3. $V(\sigma, 0, \lambda) = 0$ unless $\lambda = \frac{-2t}{t+1}$.

4.
$$V(\sigma, 1, -\frac{2}{t+1}) \neq (0)$$
.

5.
$$V(\sigma, 0, -\frac{2t}{1+t}) \neq (0)$$
.

6. Every nonzero Verma bimodule $V(\sigma, i, \lambda)$ contains a largest proper subbimodule $M(\sigma, i, \lambda)$. Hence there exists a unique irreducible D_t -bimodule

$$Irr(\sigma, i, \lambda) = V(\sigma, i, \lambda) / M(\sigma, i, \lambda)$$

generated by an element of the highest weight λ .

7. Every finite dimensional irreducible D_t -bimodule is isomorphic to $Irr(\sigma, i, \lambda)$ for some σ, i, λ .

Theorem. If $t \neq -1$ is not of the type $-\frac{m}{m+2}$, $m \geq 0$; $-\frac{m+2}{m}$, $m \geq 1$; or 1, then the only unital finite dimensional irreducible D_t -bimodules are

$$Irr(\sigma, \frac{1}{2}, m), \ m \ge 1$$
 (*).

If t=1 then add the one dimensional bimodules $Irr(\sigma, \frac{1}{2}, 0), \ \sigma = \bar{0}, \bar{1}$ to the series (*).

If $t = -\frac{m+2}{m}$, $m \ge 1$, then add the bimodules $V(\sigma, 1, m)$, $\sigma = 0, 1$ to (*).

If $t = -\frac{m}{m+2}$, $m \ge 0$, then add the bimodules $V(\sigma, 0, m)$, $\sigma = 0, \overline{1}$ to (*).

Corollary. The only finite dimensional irreducible bimodules of the (nonunital) Kaplansky superalgebra K_3 are $Irr(\sigma, \frac{1}{2}, m)$, $m \ge 1$ and $Irr(\sigma, 0, 0)$. We have:

$$\dim Irr(\sigma, \frac{1}{2}, 1) = 3, \dim Irr(\sigma, 0, 0) = 1,$$
$$\dim Irr(\sigma, \frac{1}{2}, m) = 4m \text{ if } m \ge 2.$$

Let V' denote the sub-bimodule of $V(\sigma, i, m)$ generated by $vR(x)^{2m+1}$. The quotient module $W(\sigma, i, m) = V(\sigma, i, m)/V'$ is finite dimensional

Theorem. Suppose that t is not of the type $-\frac{m}{m+2}$, $-\frac{m+2}{m}$, 0, 1, -1, m positive integer. Then every finite dimensional unital bimodule V over D_t is completely reducible.

Theorem. If $t = -\frac{m+1}{m-1}$ or $t = -\frac{m-1}{m+1}$, $m \ge 2$, then $W(\sigma, \frac{1}{2}, m)$, $\sigma = \bar{0}$ or $\bar{1}$, are the only finite dimensional indecomposible D_t -bimodules, which are not irreducible.

Bimodules over P(n)

Let us notice that P(n) consists of the symmetric elements of Mn, n(F) with respect to the following superinvolution:

$$\star: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} d^t & -b^t \\ c^t & a^t \end{pmatrix}$$

Examples of JP(n) unital bimodules are:

- 1. The regular bimodule R = JP(n),
- 2. The bimodule of skewsymmetric elements $S = Skew(M_{n,n}(F), \star) = \{ \begin{pmatrix} a & h \\ k & -a^t \end{pmatrix} \mid a \in M_n(F), h^t = h, k^t = -k \}$

Theorem. If $n \geq 3$, then every unital bimodule over JP(n) is completely reducible. The only irreducible bimodules are $S = Skew(M_{n,n}(F), \star)$ and the regular one R (and the opposite ones).

Remark If n = 2 not every module is completely reducible. Cheng- Kac is an indecomposable bimodule that is not irreducible.

Bimodules over $M_{n,m}(F)^{(+)}$

Definition. Let $A = A_{\bar{0}} + A_{\bar{1}}$ an associative superalgebra. A graded mapping $\star : A \to A$ is a "pseudoinvolution" if $(a^{\star})^{\star} = (-1)^{|a|}a$, $(ab)^{\star} = (-1)^{|a||b|}b^{\star}a^{\star}$ for homogeneous elements a, b.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} = \begin{pmatrix} a^t & -c^t \\ b^t & d^t \end{pmatrix} \text{ is a pseudoinvolution in } A(n,m)$$

If $\star:A\to A$ is a pseudoinvolution then

$$\star: A^{(+)} \to M_2(A)^{(+)}$$

$$a \to \begin{pmatrix} a & 0 \\ 0 & -a^{\star} \end{pmatrix}$$

is an embedding of Jordan superalgebras

- If W is a subspace of A satisfying

$$aw + (-1)^{|a||w|} wa^* \in W \ \forall w \in W, \ \forall a \in A$$

then $W^{up}=\begin{pmatrix}0&W\\0&0\end{pmatrix}$ is a Jordan module over $A^{(+)}\simeq\{\begin{pmatrix}a&0\\0&-a^{\star}\end{pmatrix}\}.$

- If If W is a subspace of A satisfying

$$a^*w + (-1)^{|a||w|}wa \in W \ \forall w \in W, \ \forall a \in A$$

then
$$W^{down}=\begin{pmatrix}0&0\\W&0\end{pmatrix}$$
 a Jordan module over $A^{(+)}\simeq\{\begin{pmatrix}a&0\\0&-a^{\star}\end{pmatrix}\}.$

Examples of modules over A(m, n)

1. The regular bimodules R

2.
$$W_1^{down} = \left\{ \begin{pmatrix} K_n & b \\ -b^t & H_m \end{pmatrix} \mid b \in M_{n \times m}(F) \right\}$$

3.
$$W_2^{down} = \left\{ \begin{pmatrix} H_n & b \\ -b^t & K_m \end{pmatrix} | b \in M_{n \times m}(F) \right\}$$

4.
$$W_1^{up} = \{ \begin{pmatrix} H_n & b \\ -b^t & K_m \end{pmatrix} | b \in M_{n \times m}(F) \}$$

5.
$$W_2^{up} = \left\{ \begin{pmatrix} K_n & b \\ -b^t & H_m \end{pmatrix} \mid b \in M_{n \times m}(F) \right\}$$

Theorem. Every A(n,m)- bimodule ($n \ge 2, n \ge m$) is completely reducible. There exist, up to opposite, five unital bimodules over A(n,m) that are the given above

Remark

Unital bimodules over Poisson brackets superalgebras have been studied by A. Stern.

- Every finitely generated bimodule is finite dimensional
- If J has n > 4 generators, then every irreducible J-bimodule is either isomorphic to the regular one or to its opposite.
- The same results for unital irreducible bimodules over K_{10}