BIMODULES OVER SIMPLE FINITE-DIMENSIONAL

JORDAN SUPERALGEBRAS

Consuelo Martínez López

Workshop on Nonassociative Algebras

Toronto, 12-14 May 2005

SUPERALGEBRA : $A=A_{\overline{0}}+A_{\overline{1}}, A_{\bar{i}} \cdot A_{\bar{j}} \subseteq A_{i \overline{+} j}$ a $Z / 2 Z$-graded algebra

EX. V vector space of countable dimension, $G(V)=G(V)_{\overline{0}}+G(V)_{\overline{1}}$ Grassmann algebra over V,

$$
G(A)=A_{\overline{0}} \otimes G(V)_{\overline{0}}+A_{\overline{1}} \otimes G(V)_{\overline{1}} \leq A \otimes G(V)
$$

Grassmann enveloping algebra of A
\mathcal{V} a variety of algebras (associative, Lie, Jordan,...)
DEF. $A=A_{\overline{0}}+A_{\overline{1}}$ is a \mathcal{V}-superalgebra if $G(A) \in \mathcal{V}$.
$J=J_{\overline{0}}+J_{\overline{1}}$ is a Jordan superalgebra if it satisfies
SJ1. Supercommutativity $a \cdot b=(-1)^{|a||b|} b \cdot a$,

SJ2. Super Jordan identity

$$
\begin{aligned}
& (a \cdot b) \cdot(c \cdot d)+(-1)^{|b| c \mid}(a \cdot c) \cdot(b \cdot d)+ \\
& (-1)^{|b||d|+|c||d|}(a \cdot d) \cdot(b \cdot c)= \\
& ((a \cdot b) \cdot c) \cdot d+(-1)^{|c||d|+|b| \mid c}((a \cdot d) \cdot c) \cdot b+ \\
& (-1)^{|a||b|+|a||c|+|a||d|+|c||d|}((b \cdot d) \cdot c) \cdot a .
\end{aligned}
$$

JORDAN SUPERALGEBRAS

$A=A_{\overline{0}}+A_{\overline{1}}$ associative superalgebra
$A^{(+)}=\left(A, a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)\right.$ Jordan superalgebra

$$
J=J_{\overline{0}}+J_{\overline{1}} \leq A^{(+)} \text {special. Otherwise excep- }
$$ tional

(A) $A^{(+)}, A=M_{m+n}(F)$ full linear superalgebra
(Q) $A^{(+)}, A=\left\{\left.\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in M_{n}(F)\right\}$

If $\star: A \rightarrow A$ is an involution : $\left(a^{\star}\right)^{\star}=a,(a b)^{\star}=$ $(-1)^{|a||b|} b^{\star} a^{\star}$.
$H(A, \star)=\left\{a \in A \mid a^{\star}=a\right\} \leq A^{(+)}$
(BC) $M_{m+2 n}(F), Q=\left(\begin{array}{cc}I_{m} & 0 \\ 0 & S_{2 n}\end{array}\right)$,

$$
S_{2 n}=\left(\begin{array}{ccccc}
0 & 1 & . & . & . \\
-1 & 0 & . & . & . \\
. & . & . & . & . \\
. & . & . & 0 & 1 \\
. & . & . & -1 & 0
\end{array}\right)
$$

$\star:\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow Q^{-1}\left(\begin{array}{cc}a^{T} & -c^{T} \\ b^{T} & d^{T}\end{array}\right) Q, a \in M_{m}(F)$,
$d \in M_{2 n}(F)$,
$H(A, \star)=\mathbf{o s p}_{\mathbf{m}, \mathbf{2}}(\mathbf{F})$.

$$
\begin{aligned}
& (\mathbf{P}) A=M_{n+n}(F), \star:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{cc}
d^{T} & -b^{T} \\
c^{T} & a^{T}
\end{array}\right), \\
& H(A, \star)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & a^{T}
\end{array}\right) \right\rvert\, a, b, c \in M_{n}(F), b^{T}=-b,\right. \\
& \left.c^{T}=c\right\} .
\end{aligned}
$$

(D) A Superalgebra of a superform

$$
V=V_{\overline{0}}+V_{\overline{1}},<,>: V \times V \rightarrow F \text { a supersymmetric }
$$ bilinear form

$$
\begin{aligned}
& J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}},(\alpha 1+v)(\beta 1+w)= \\
& (\alpha \beta+\langle v, w>) 1+(\alpha w+\beta v) .
\end{aligned}
$$

$\left(\mathbf{D}_{\mathbf{t}}\right) J_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y), t \neq 0$
$e_{i}^{2}=e_{i}, e_{1} e_{2}=0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y,[x, y]=e_{1}+t e_{2}$.
(J) All simple Jordan algebras
(F) The 10-dimensional exceptional Kac superalgebra

$$
\begin{aligned}
& \quad K_{10}=\left[\left(F e_{1}+\sum_{i=1}^{4} F v_{i}\right)+F e_{2}\right]+\left(\sum_{i=1}^{2} F x_{i}+F y_{i}\right) \\
& e_{i}^{2}=e_{i}, \quad e_{1} e_{2}=0, \quad e_{1} v_{i}=v_{i}, e_{2} v_{i}=0, v_{1} v_{2}=2 e_{1}= \\
& v_{3} v_{4}, \\
& e_{i} x_{j}=\frac{1}{2} x_{j}, \quad e_{i} y_{j}=\frac{1}{2} y_{j}, \quad i, j=1,2 \\
& y_{1} v_{1}=x_{2}, \quad y_{2} v_{1}=-x_{1}, \quad x_{1} v_{2}=-y_{2}, \quad x_{2} v_{2}=y_{1}, \\
& x_{2} v_{3}=x_{1}, \quad y_{1} v_{3}=y_{2}, \quad x_{1} v_{4}=x_{2}, \quad y_{2} v_{4}=y_{1}, \\
& {\left[x_{i}, y_{i}\right]=e_{1}-3 e_{2}, \quad\left[x_{1}, x_{2}\right]=v_{1}, \quad\left[y_{1}, y_{2}\right]=v_{2},} \\
& {\left[x_{1}, y_{2}\right]=v_{3}, \quad\left[x_{2}, y_{1}\right]=v_{4} .}
\end{aligned}
$$

(K) The 3-dimensional Kaplansky superalgebra

$$
\begin{aligned}
& \quad K_{3}=F e+(F x+F y), \quad e^{2}=e, \quad e x=\frac{1}{2} x, \\
& e y=\frac{1}{2} y, \quad[x, y]=e .
\end{aligned}
$$

Theorem. (Kac 77, Kantor 89) A simple finite dimensional Jordan superalgebra over an algebraically closed field of zero characteristic is isomorphic to one of the superalgebras $A, B C, D, P, Q, D_{t}, F, K, J$ listed above or to a superalgebra obtained by the Kantor-double process

Theorem. (Racine, Zelmanov, J. of Algebra 270, 2003) Every simple Jordan superalgebra over an algebraically closed field F, chF $=p>2$, with its even part semisimple is isomorphic to one of the superalgebras mentioned above + Some additional examples in char 3

Jordan Superalgebras defined by Brackets

$\Gamma=\Gamma_{\overline{0}}+\Gamma_{\overline{1}}$ an associative commutative superalgebra $\{\}:, \Gamma \times \Gamma \rightarrow \Gamma$ a Poisson bracket if $\left\{\Gamma_{\bar{i}}, \Gamma_{\bar{j}}\right\} \subseteq \Gamma_{i \bar{\mp} j}$ and
(1) $(\Gamma,\{\}$,$) is a Lie superalgebra,$
(2) $\{a b, c\}=a\{b, c\}+(-1)^{|b| c \mid}\{a, c\} b$ (Leibniz identity)

Kantor Double Superalgebra

$J=\Gamma+\Gamma x, \quad a(b x)=(a b) x, \quad(b x) a=(-1)^{|a|}(b a) x$, $(a x)(b x)=(-1)^{|b|}\{a, b\}, \quad J_{\overline{0}}=\Gamma_{\overline{0}}+\Gamma_{\overline{1}} x, J_{\overline{1}}=\Gamma_{\overline{1}}+$ $\Gamma_{\overline{0}} x$.

Theorem. (Kantor 1992) Let $\{$,$\} be a Poisson bracket$ $\Longrightarrow \quad J=\Gamma+\Gamma x$ is a Jordan superalgebra.

Kantor superalgebra

$\Gamma=$ Grassman algebra on ξ_{1}, \ldots, ξ_{n}
$\Gamma=\Gamma_{\overline{0}}+\Gamma_{\overline{1}},\{f, g\}=\sum_{i=1}^{n}(-1)^{|f|} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{i}}$
$J=\Gamma+\Gamma x\left\{\begin{array}{lc}n=1 & J \simeq D(-1) \\ n \geq 2 & J_{\overline{0}} \\ \text { is not semisimple }\end{array}\right.$

CHENG-KAC JORDAN SUPERALGEBRAS

Z unital associative commutative algebra, $d: Z \rightarrow$ Z a derivation,
$C K(Z, d)=J_{\overline{0}}+J_{\overline{1}}, J_{\overline{0}}=Z+\sum_{i=1}^{3} w_{i} Z, J_{\overline{1}}=x Z+$ $\sum_{i=1}^{3} x_{i} Z$ free Z-modules of rank 4 .

Even part $w_{i} w_{j}=0, i \neq j, w_{1}^{2}=w_{2}^{2}=1, w_{3}^{2}=-1$,

Notation: $x_{i \times i}=0, \quad x_{1 \times 2}=-x_{2 \times 1}=x_{3} \quad x_{1 \times 3}=$ $-x_{3 \times 1}=x_{2}, \quad-x_{2 \times 3}=x_{3 \times 2}=x_{1}$.

Module action $f, g \in Z$

	g	$w_{j} g$
$x f x(f g)$	$x_{j}\left(f g^{d}\right)$	
$x_{i} f$	$x_{i}(f g)$	$x_{i \times j}(f g)$

Bracket on M

$$
\begin{array}{c|c|c}
& x g & x_{j} g \\
\hline x f & f^{d} g-f g^{d} & -w_{j}(f g) \\
\hline x_{i} f & w_{i}(f g) & 0
\end{array}
$$

$C K(Z, d)$ is simple $\Longleftrightarrow Z$ does not contain proper d-invariant ideals.
$B(m)=F\left[a_{1}, \ldots, a_{m} \mid a_{i}^{p}=0\right]$
$\mathbf{B}(\mathbf{m}, \mathbf{n})=\mathbf{B}(\mathbf{m}) \otimes \mathbf{G}(\mathbf{n}) \quad \mathbf{G}(\mathbf{n})=<\mathbf{1}, \xi_{1}, \ldots, \xi_{\mathbf{n}}>$

Theorem. (M., Zelmanov, J. of Algebra 236, 2001)

Let $J=J_{\overline{0}}+J_{\overline{1}}$ be a finite dimensional simple unital Jordan superalgebra over an algebraically closed field F, $\operatorname{ch} F=p>2$, $J_{\overline{0}}$ not semisimple. Then
$\mathbf{J} \simeq \mathbf{B}(\mathbf{m}, \mathbf{n})+\mathbf{B}(\mathbf{m}, \mathbf{n}) \mathbf{x} \quad$ a Kantor double or
$\mathbf{J} \simeq \mathbf{C K}(\mathbf{B}(\mathbf{m}), \mathbf{d})$.

SPECIALITY

King, McCrimmon (J. Algebra 149, 1995)

- The Kantor Double of a bracket of vector field type ($\{a, b\}=a^{\prime} b-a b^{\prime}$ ' a derivation) is special.
- The Kantor Double of $\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$ on $F[x, y]$ is exceptional.

Shestakov (1993)

- A Kantor Double of Poisson bracket $<,>: \Gamma \times \Gamma \rightarrow$ Γ is special iff $\ll \Gamma, \Gamma>, \Gamma>=(0)$.
- A Kantor Double of a Poisson bracket is i-special (homomorphic image of a special superalgebra)

Theorem. (M., Shestakov, Zelmanov) A Kantor Double of a Jordan bracket is i-special.

Assumption: $J=\Gamma+\Gamma x$ does not contain $\neq(0)$ nilpotent ideals

- If $\Gamma=\Gamma_{\overline{0}}$ then J is special iff $<,>$ is of vector field type.
- If $\Gamma_{\overline{1}} \Gamma_{\overline{1}} \neq(0)$ (at least 2 Grassmann variables) then J is exceptional.
- If $\Gamma=\Gamma_{\overline{0}}+\Gamma_{\overline{0}} \xi_{1},<\Gamma_{\overline{0}}, \xi_{1}>=(0),<\xi_{1}, \xi_{1}>=-1$ then J is special iff $<,>: \Gamma_{\overline{0}} \times \Gamma_{\overline{0}} \rightarrow \Gamma_{\overline{0}}$ is of vector field type.

Theorem. (M., Shestakov, Zelmanov) The Cheng-Kac superalgebra $C K(Z, d)$ is special

The embedding extends McCrimmon embedding for vector field type brackets.

$$
W=<R(a), a \in Z, d>- \text { differential operators on }
$$

Z

$$
R=R_{\overline{0}}+R_{\overline{1}}=\mathcal{M}_{4 \times 4}(W)
$$

Let J be a special Jordan superalgebra.
A specialization $u: J \longrightarrow U$ into an associative algebra U is said to be universal if $U=<u(J)>$ and for an arbitrary specialization $\varphi: J \rightarrow A$ there exists a homomorphism of associative algebras $\xi: U \rightarrow A$ such that $\varphi=\xi \cdot u$.

The algebra U is called the universal associative enveloping algebra of J.

An arbitrary special Jordan superalgebra contains a unique universal specialization $u: J \rightarrow U$.
U is equipped with a superinvolution * having all elements from $u(J)$ fixed, i.e., $u(J) \subseteq H(U, *)$.

We call a special Jordan superalgebra reflexive if $u(J)=H(U, *)$.

Theorem. $U\left(M_{m, n}^{(+)}(F)\right) \simeq M_{m, n}(F) \oplus M_{m, n}(F)$ for $(m, n) \neq(1,1) ; U\left(Q^{(+)}(n)\right)=Q(n) \oplus Q(n), n \geq 2 ;$ $U(o s p(m, n)) \simeq M_{m, n}(F),(m, n) \neq(1,2) ; U(P(n)) \simeq$ $M_{n, n}(F), n \geq 3$.

Theorem. The embedding σ of the Cheng-Kac superalgebra is universal, that is, $U(C K(Z, D)) \cong M_{2,2}(W)$. The restriction of the embedding u (see above) to $P(2)$ is a universal specialization; $U(P(2)) \simeq M_{2,2}(F[t])$, where $F[t]$ is a polynomial algebra in one variable.

The Jordan superalgebra of a superform

Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a $Z / 2 Z$-graded vector space, dim $V_{\overline{0}}=m, \operatorname{dim} V_{\overline{1}}=2 m$; let $<,>: V \times V \rightarrow F$ be a supersymmetric bilinear form on V. The universal associative enveloping algebra of the Jordan algebra $F 1+V_{\overline{0}}$ is the Clifford algebra $C l(m)=<1, e_{1}, \ldots, e_{m} \mid e_{i} e_{j}+e_{j} e_{i}=$ $0, i \neq j, e_{i}^{2}=1>$.

Consider the Weyl algebra $W_{n}=<1, x_{i}, y_{i}, 1 \leq$ $i \leq n \mid\left[x_{i}, y_{j}\right]=\delta_{i j},\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=0>$. Assuming $x_{i}, y_{i}, 1 \leq i \leq n$ to be odd, we make W_{n} a superalgebra. The universal associative enveloping algebra of $F 1+V$ is isomorphic to the (super)tensor product $C l(m) \otimes_{F} W_{n}$.

Specializations of $M_{1,1}(F)$

Theorem. $U\left(M_{1,1}(F)\right) \simeq\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$. The mapping

$$
u:\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12}+\alpha_{21} a^{-1} z_{2} \\
\alpha_{12} z_{1}+\alpha_{21} a & \alpha_{22}
\end{array}\right)
$$

is a universal specialization.
Here a is root of the equation $a^{2}+a-z_{1} z_{2}=0, A=$ $F\left[z_{1}, z_{2}\right]+F\left[z_{1}, z_{2}\right] a$ is a subring of K a quadratic extension of $F\left(z_{1}, z_{2}\right)$ generated by a and $M_{12}=F\left[z_{1}, z_{2}\right]+$ $F\left[z_{1}, z_{2}\right] a^{-1} z_{2}, M_{21}=F\left[z_{1}, z_{2}\right] z_{1}+F\left[z_{1}, z_{2}\right] a$ are subspaces of K.

Let V be a Jordan bimodule over the (super)algebra J
V is a one-sided bimodule if $\{J, V, J\}=(0)$.
Then, the mapping $a \rightarrow 2 R_{V}(a) \in E n d_{F} V$ is a specialization.

The category of one-sided bimodules over Jis equivalent to the category of right (left) $U(J)$-modules.

Let e be the identity of J and let $V=$ $\{e, V, e\}+\{1-e, V, e\}+\{1-e, V, 1-e\}$ be the Peirce decomposition. Then $\{e, V, e\}$ is a unital bimodule over J, that is, e is an identity of $\{e, V, e\}+J$. The component $\{1-e, V, e\}$ is a one-sided module, that is, $\{J,\{1-e, V, e\}, J\}=(0)$.

Finally, $\{1-e, V, 1-e\}$ is a bimodule with zero multiplication.

Remark One sided finite dimensional Jordan bimodules over $M_{1,1}(F)$ are not necessarily completely reducible.

Theorem. (C.M. and I. Shestakov) If V is a unital bimodule over $M_{1,1}(F) \simeq D_{-1}$ and v is an element in $\left\{e_{1}, V, e_{1}\right\}$ (similarly in $\left\{e_{1}, V, e_{1}\right\}$) then the linear span of $v, w=(v x) y, v x, v y$ is a subbimodule of V.

The multiplication is given by:

$$
e_{1} v=v, e_{2} v=0, v x, v y
$$

$e_{1} w=\left(\frac{1}{2}+\gamma\right) v, e_{2} w=w+\left(\frac{-1}{2}+\gamma\right) v, w x=2 \gamma v x-$ $\alpha v y, w y=\beta v x$.

$$
\begin{aligned}
& \quad e_{1} v x=\frac{1}{2} v x, e_{2} v x=\frac{1}{2} v x,(v x) x=\alpha v,(v x) y=w \\
& \beta v
\end{aligned} \quad e_{1} v y=\frac{1}{2} v y, e_{2} v=\frac{1}{2} v y,(v y) x=2 \gamma v-w,(v y) y=
$$

with α, β and γ elements in F.

- If $\alpha \beta+\gamma^{2}-\frac{1}{4}=0$ the previous module is indecomposable, but not irreducible.
- A unital irreducible bimoduleover D_{-1} has either dimension 4 or dimension 2

Specializations of superalgebras $D(t)$

Clearly, $D(-1) \cong M_{1,1}(F), D(0) \cong K_{3} \oplus F 1, D(1)$ is a Jordan superalgebra of a superform.
Let $\operatorname{osp}(1,2)$ denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x, y be the standard basis of the odd part of $\operatorname{osp}(1,2)$.

Theorem. (I. Shestakov) The universal enveloping algebra of K_{3} is isomorphic to $U\left(\operatorname{osp}(1,2) / i d\left([x, y]^{2}-\right.\right.$ $[x, y])$), where $U(\operatorname{osp}(1,2))$ is the universal associative enveloping algebra of $\operatorname{osp}(1,2)$ and $\left.i d\left([x, y]^{2}-[x, y]\right)\right)$ is the ideal of $U(\operatorname{osp}(1,2))$ generated by $[x, y]^{2}-[x, y]$.

Clearly, if $\operatorname{ch} F=0$ then K_{3} does not have nonzero specializations that are finite dimensional algebras. If $\operatorname{ch} F=p>0$ then K_{3} has such specializations. For example, $K_{3} \subseteq C K\left(F\left[a \mid a^{p}=0\right], d / d a\right)$.

$$
t \neq-1,0,1
$$

Theorem. (I. Shestakov) The universal enveloping algebra of $D(t)$ is isomorphic to $U\left(\operatorname{osp}(1,2) / i d\left([x, y]^{2}-\right.\right.$ $(1+t)[x, y]+t)$.

Corollary. If $\operatorname{ch} F=0$ then all finite dimensional onesided bimodules over $D(t)$ are completely reducible.

Theorem. (C.M and E. Zelmanov). Let chF $=0$. Then:
a) If $\frac{t=-m}{m+1}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $V_{1}(t)$ and $V_{1}(t)^{o p}$.
b) If $\frac{t=-m+1}{m}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $V_{2}(t)$ and $V_{2}(t)^{o p}$.
c) If t can not be represented as $\frac{-m}{m+1}$ or $\frac{-m+1}{m}$, where m is a positive integer, then $D(t)$ does not have nonzero finite dimensional specializations.

Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a finite dimensional irreducible right module over the associative superalgebra $U(D(t))$. The elements $E=\frac{2}{1+t} x^{2}, \quad F=-\frac{2}{1+t} y^{2}$ and $H=-\frac{2}{1+t}(x y+y x)$ span the Lie algebra $s l_{2}$.

Let's consider an infinite dimensional Verma type module $\tilde{V}=\tilde{v} U(D(t))$ defined by one generator \tilde{v} and the relations: $\tilde{v} H=\lambda \tilde{v}, \tilde{v} e_{1}=\tilde{v}, \tilde{v} y^{2}=0$.

Then the system of relators of $\tilde{V}: \tilde{v} e_{1}-\tilde{v}=0$, $\tilde{v} y^{2}=0, \tilde{v} y x-t \tilde{v}=0+$ relators of $D(t): e_{1}^{2}-e_{1}=0$, $x e_{1}+e_{1} x-x=0, y e_{1}+e_{1} y-y=0, x y-y x-t-(1-t) e_{1}=$ 0 . Hence the irreducible elements $\tilde{v}, \tilde{v} y, \tilde{v} x, i \geq 1$ form a basis of this module that we will denote as $\tilde{V}_{1}(t)$.

If $\tilde{v} y=0$ then the irreducible elements $\tilde{v}, \tilde{v} x^{i}, i \geq 1$ form a basis of the module that will be denoted as $V_{2}(t)$.

Changing parity we get two new bimodules $\tilde{V}_{1}(t)^{o p}$ and $\tilde{V}_{2}(t)^{o p}$.

Unital bimodules over $D_{t} \operatorname{char} F=0$
Maria Trushina (also in case char $F=p$)
Definition. For $\sigma \in\{\overline{0}, \overline{1}\}, i \in\left\{0,1, \frac{1}{2}\right\}, \lambda \in F$, a Verma module $V(\sigma, i, \lambda)$ is a unital D_{t}-bimodule presented by one generator v of parity σ and the relations: $v R\left(e_{1}\right)=i v, v R(y)=0, v H=\lambda v$.

Notice that $V(\sigma, i, \lambda)^{o p}=V(1-\sigma, i, \lambda)$

1. For an arbitrary $\lambda \in F, V\left(\sigma, \frac{1}{2}, \lambda\right) \neq(0)$.
2. $V(\sigma, 1, \lambda)=(0)$ unless $\lambda=\frac{-2}{t+1}$.
3. $V(\sigma, 0, \lambda)=0$ unless $\lambda=\frac{-2 t}{t+1}$.
4. $V\left(\sigma, 1,-\frac{2}{t+1}\right) \neq(0)$.
5. $V\left(\sigma, 0,-\frac{2 t}{1+t}\right) \neq(0)$.
6. Every nonzero Verma bimodule $V(\sigma, i, \lambda)$ contains a largest proper subbimodule $M(\sigma, i, \lambda)$. Hence there exists a unique irreducible D_{t}-bimodule

$$
\operatorname{Irr}(\sigma, i, \lambda)=V(\sigma, i, \lambda) / M(\sigma, i, \lambda)
$$

generated by an element of the highest weight λ.
7. Every finite dimensional irreducible D_{t}-bimodule is isomorphic to $\operatorname{Irr}(\sigma, i, \lambda)$ for some σ, i, λ.

Theorem. If $t \neq-1$ is not of the type $-\frac{m}{m+2}, m \geq 0$; $-\frac{m+2}{m}, m \geq 1$; or 1 , then the only unital finite dimensional irreducible D_{t}-bimodules are

$$
\begin{equation*}
\operatorname{Irr}\left(\sigma, \frac{1}{2}, m\right), m \geq 1 \tag{*}
\end{equation*}
$$

If $t=1$ then add the one dimensional bimodules $\operatorname{Irr}\left(\sigma, \frac{1}{2}, 0\right), \sigma=\overline{0}, \overline{1}$ to the series $(*)$.

If $t=-\frac{m+2}{m}, \quad m \geq 1$, then add the bimodules $V(\sigma, 1, m), \sigma=\overline{0}, \overline{1}$ to $(*)$.

If $t=-\frac{m}{m \pm 2}, \quad m \geq 0$, then add the bimodules $V(\sigma, 0, m), \sigma=\overline{0}, \overline{1}$ to $(*)$.

Corollary. The only finite dimensional irreducible bimodules of the (nonunital) Kaplansky superalgebra K_{3} are $\operatorname{Irr}\left(\sigma, \frac{1}{2}, m\right), m \geq 1$ and $\operatorname{Irr}(\sigma, 0,0)$. We have:

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Irr}\left(\sigma, \frac{1}{2}, 1\right)=3, \operatorname{dim} \operatorname{Irr}(\sigma, 0,0)=1, \\
& \operatorname{dim} \operatorname{Irr}\left(\sigma, \frac{1}{2}, m\right)=4 m \text { if } m \geq 2 .
\end{aligned}
$$

Let V^{\prime} denote the sub-bimodule of $V(\sigma, i, m)$ generated by $v R(x)^{2 m+1}$. The quotient module $W(\sigma, i, m)=$ $V(\sigma, i, m) / V^{\prime}$ is finite dimensional

Theorem. Suppose that t is not of the type $-\frac{m}{m+2}$, $-\frac{m+2}{m}, 0,1,-1, m$ positive integer. Then every finite dimensional unital bimodule V over D_{t} is completely reducible.

Theorem. If $t=-\frac{m+1}{m-1}$ or $t=-\frac{m-1}{m+1}, m \geq 2$, then $W\left(\sigma, \frac{1}{2}, m\right), \sigma=\overline{0}$ or $\overline{1}$, are the only finite dimensional indecomposible D_{t}-bimodules, which are not irreducible.

Bimodules over $\mathbf{P (n)}$

Let us notice that $P(n)$ consists of the symmetric elements of $M n, n(F)$ with respect to the following superinvolution:

$$
\star:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{cc}
d^{t} & -b^{t} \\
c^{t} & a^{t}
\end{array}\right)
$$

Examples of $J P(n)$ unital bimodules are:

1. The regular bimodule $R=J P(n)$,
2. The bimodule of skewsymmetric elements $S=$ $\operatorname{Skew}\left(M_{n, n}(F), \star\right)=\left\{\left.\left(\begin{array}{cc}a & h \\ k & -a^{t}\end{array}\right) \right\rvert\, a \in M_{n}(F), h^{t}=\right.$ $\left.h, k^{t}=-k\right\}$

Theorem. If $n \geq 3$, then every unital bimodule over $J P(n)$ is completely reducible. The only irreducible bimodules are $S=\operatorname{Skew}\left(M_{n, n}(F), \star\right)$ and the regular one R (and the opposite ones).

Remark If $n=2$ not every module is completely reducible. Cheng- Kac is an indecomposable bimodule that is not irreducible.

Bimodules over $M_{n, m}(F)^{(+)}$
Definition. Let $A=A_{\overline{0}}+A_{\overline{1}}$ an associative superalgebra. A graded mapping $\star: A \rightarrow A$ is a "pseudoinvolution" if $\left(a^{\star}\right)^{\star}=(-1)^{|a|} a,(a b)^{\star}=(-1)^{|a||b|} b^{\star} a^{\star}$ for homogeneous elements a, b.

$$
\begin{aligned}
& \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\star}=\left(\begin{array}{cc}
a^{t} & -c^{t} \\
b^{t} & d^{t}
\end{array}\right) \text { is a pseudoinvolution in } \\
& A(n, m)
\end{aligned}
$$

If $\star: A \rightarrow A$ is a pseudoinvolution then

$$
\begin{gathered}
\star: A^{(+)} \rightarrow M_{2}(A)^{(+)} \\
\\
\\
a \rightarrow\left(\begin{array}{cc}
a & 0 \\
0 & -a^{\star}
\end{array}\right)
\end{gathered}
$$

is an embedding of Jordan superalgebras

- If W is a subspace of A satisfying

$$
a w+(-1)^{|a||w|} w a^{\star} \in W \forall w \in W, \forall a \in A
$$

then $W^{u p}=\left(\begin{array}{cc}0 & W \\ 0 & 0\end{array}\right)$ is a Jordan module over $A^{(+)} \simeq$ $\left\{\left(\begin{array}{cc}a & 0 \\ 0 & -a^{\star}\end{array}\right)\right\}$.

- If If W is a subspace of A satisfying

$$
a^{\star} w+(-1)^{|a||w|} w a \in W \forall w \in W, \forall a \in A
$$

then $W^{\text {down }}=\left(\begin{array}{cc}0 & 0 \\ W & 0\end{array}\right)$ a Jordan module over $A^{(+)} \simeq$ $\left\{\left(\begin{array}{cc}a & 0 \\ 0 & -a^{\star}\end{array}\right)\right\}$.

Examples of modules over $A(m, n)$

1. The regular bimodules R
2. $W_{1}^{\text {down }}=\left\{\left.\left(\begin{array}{cc}K_{n} & b \\ -b^{t} & H_{m}\end{array}\right) \right\rvert\, b \in M_{n \times m}(F)\right\}$
3. $W_{2}^{\text {down }}=\left\{\left.\left(\begin{array}{cc}H_{n} & b \\ -b^{t} & K_{m}\end{array}\right) \right\rvert\, b \in M_{n \times m}(F)\right\}$
4. $W_{1}^{u p}=\left\{\left.\left(\begin{array}{cc}H_{n} & b \\ -b^{t} & K_{m}\end{array}\right) \right\rvert\, b \in M_{n \times m}(F)\right\}$
5. $W_{2}^{u p}=\left\{\left.\left(\begin{array}{cc}K_{n} & b \\ -b^{t} & H_{m}\end{array}\right) \right\rvert\, b \in M_{n \times m}(F)\right\}$

Theorem. Every $A(n, m)$ - bimodule ($n \geq 2, n \geq m$) is completely reducible. There exist, up to opposite, five unital bimodules over $A(n, m)$ that are the given above

Remark

Unital bimodules over Poisson brackets superalgebras have been studied by A. Stern.

- Every finitely generated bimodule is finite dimensional
- If J has $n>4$ generators, then every irreducible J-bimodule is either isomorphic to the regular one or to its opposite.
- The same results for unital irreducible bimodules over K_{10}

