Orbifold Vertex Algebras and EALA Representations

(work in progress with Y. Billig)

Michael Lau 13 May 2005 Goal: Use vertex algebras to construct interesting representations for EALAs.

Outline:

- 1. Review Affine Theory
 - Loop Realization of Affine L.A.s
 - Vertex Algebras & Vertex L.A.s
- 2. Vertex Algebras for EALAs
 - EALAs
 - Toroidal Example
 - Multiloop Realization
 - Orbifold Vertex Algebras
- 3. Representations for EALAs
 - Thin Coverings
 - Irreducible Modules

(We will work over \mathbb{C} .)

Loop Algebras

 $\dot{\mathfrak{g}}$ finite dim. simple L.A.

 $\sigma: \dot{\mathfrak{g}} \to \dot{\mathfrak{g}}$ auto of order m

Fix ξ prim. mth root of 1.

Write $k \mapsto \overline{k}$ in $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$

$$\dot{\mathfrak{g}}_{\overline{k}} := \{ x \in \dot{\mathfrak{g}} \mid \sigma x = \xi^k x \}$$

 σ extends to $\dot{\mathfrak{g}} \otimes \mathbb{C}[t, t^{-1}]$:

$$\sigma(x \otimes t^n) = \xi^{-n} \sigma(x) \otimes t^n$$

Def: The loop algebra

$$L(\dot{\mathfrak{g}},\sigma) := \sum_{k \in \mathbb{Z}} \dot{\mathfrak{g}}_{\overline{k}} \otimes t^k = \{\dot{\mathfrak{g}} \otimes \mathbb{C}[t,t^{-1}]\}^{\sigma}$$

Thm [V. Kac, 1969]: Every affine L.A. is a loop algebra extended by a central element (and a derivation).

Vertex Algebras

Def: A <u>vertex algebra</u> consists of the following data:

- \bullet (space of states) a vector space V
- (vacuum vector) $\mathbb{1} \in V$
- (vertex operators)

$$Y(\cdot, z): V \to \operatorname{End} V[[z^{\pm}]]$$

$$A \mapsto Y(A, z) = \sum_{n \in \mathbb{Z}} A_{(n)} z^{-n-1}$$

Satisfying 2 Axioms (Vacuum & Locality)

Vertex Lie Algebras

A L.A. \mathfrak{g} is a <u>vertex Lie algebra</u> if there is a family of formal Laurent series (called *fields*) in $\mathfrak{g}[[z^{\pm}]]$, whose commutators encode the multiplication in \mathfrak{g} and satisfy certain vertex operator-like conditions.

Example: The affine Lie algebra

$$\widehat{\mathfrak{g}} := \dot{\mathfrak{g}} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}\mathbf{c}$$
 is a vertex L.A.

Fields:
$$x(z) := \sum_{n \in \mathbb{Z}} (x \otimes t^n) z^{-n-1}$$

$$\mathbf{c}(z) = \mathbf{c}z^0$$

$$[x(z), y(w)] = [x, y](w)z^{-1}\delta(\frac{w}{z}) + (x|y)\mathbf{c}z^{-1}\frac{\partial}{\partial w}\delta(\frac{w}{z})$$

Remark: If \mathfrak{g} is a vertex L.A., then $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{+}$ (as vector spaces) where $\mathfrak{g}_{\pm} = \{\text{coeffs of } z^{n} \mid n \in \mathbb{Z}_{\mp} \}$ are Lie subalgebras. $(\mathbb{Z}_{-} = \mathbb{Z}_{<0}, \mathbb{Z}_{+} = \mathbb{Z}_{>0})$

Thm [e.g. Dong-Li-Mason, 2001]:

If \mathfrak{g} is a vertex Lie algebra, then the \mathfrak{g} -module $\operatorname{Ind}_{\mathfrak{g}_+}^{\mathfrak{g}}(\mathbb{C}1) \cong \mathcal{U}(\mathfrak{g}_-) \otimes \mathbb{C}1$ has a natural vertex algebra structure (called the enveloping vertex algebra).

Remark: $\left\{\text{modules of V.A. Ind}_{\widehat{\mathfrak{g}}_+}^{\widehat{\mathfrak{g}}}(\mathbb{C}1)\right\}$

$$= \left\{ \text{smooth modules of L.A. } \widehat{\mathfrak{g}} \right\}$$

 $(M \text{ is } smooth \text{ if for each } m \in M \text{ and } x \in \dot{\mathfrak{g}}, (x \otimes t^N).m = 0 \text{ for } N \gg 0.)$

Extended Affine Lie Algebras

- EALAs are multivariable generalizations of affine L.A.s
- have a nondeg. symm. bilinear form
- have a notion of type, corresponding to finite irred. root systems
- can be written in the form [e.g. Allison-Benkart-Gao, 2000]

$$(\dot{\mathfrak{g}}\otimes A)\oplus (V\otimes B)\oplus \mathcal{C}\oplus \mathcal{D}$$

where

 $\dot{\mathfrak{g}}$ fin. dim. simple Lie algebra

V (little adjoint) $\dot{\mathfrak{g}}$ -module

 $A \oplus B$ algebra

 \mathcal{C} elts commuting with all but D

 \mathcal{D} some derivations of $A \oplus B$

Example: Toroidal Lie Algs

 $\dot{\mathfrak{g}}$ fin. dim. simple L.A.

$$A = \mathbb{C}[t_0^{\pm 1}, \dots, t_N^{\pm 1}]$$

Then $\dot{\mathfrak{g}} \otimes A$ is an EALA

More interesting rep theory with a central extension:

$$\operatorname{uce}(\dot{\mathfrak{g}}\otimes A)=(\dot{\mathfrak{g}}\otimes A)\oplus\Omega^1_A/dA$$

$$[x \otimes f(\mathbf{t}), y \otimes g(\mathbf{t})] = [x, y] \otimes f(\mathbf{t})g(\mathbf{t}) + (x|y)\overline{g(\mathbf{t})df(\mathbf{t})}$$

EALAs require nondeg. bilin. form \rightsquigarrow must add $\mathcal{D} = \{\text{skew-centr. ders of } A\}$ $= \{\text{div. 0 vector fields on } \mathbb{T}^{N+1}\}$ (cf. Neher, 2004)

Toroidal EALA: $(\dot{\mathfrak{g}}\otimes A)\oplus\Omega^1_A/dA\oplus\mathcal{D}$

We want a vertex L.A., so we add <u>all</u> (polyn.) vector fields on \mathbb{T}^{N+1} .

Also twist mult. by a 2-cocycle τ , generalizing the Virasoro cocycle:

$$\tau: \operatorname{Vect}(\mathbb{T}^{N+1}) \times \operatorname{Vect}(\mathbb{T}^{N+1}) \to \Omega_A^1/dA$$

Full Toroidal L.A.
$$\mathfrak{g}_{\mathrm{tor}}^{\tau} = (\dot{\mathfrak{g}} \otimes A) \oplus \Omega_A^1/dA \oplus_{\tau} \mathrm{Vect}(\mathbb{T}^{N+1})$$

No symm. invar. bilin. form.

Let $\mathfrak{g}(\mu\tau) := \text{toroidal EALA with } \mu\tau$, for $\mu \in \mathbb{C}$

Simple quotient of enveloping VA of $\mathfrak{g}_{tor}^{\mu\tau}$ is tensor product of several well-known VAs. This lets one find modules for $\mathfrak{g}_{tor}^{\mu\tau}$.

Restricting to $\mathfrak{g}(\mu\tau)$ gives:

Thm [Billig, 2005]: The tensor product $L_c(\dot{\mathfrak{g}}) \otimes \operatorname{Hyp}_N^+ \otimes L_{c_1}(\mathfrak{sl}_N) \otimes Vir(c_2)$

is an irreducible module for $\mathfrak{g}(\mu\tau)$ where $L_c(\dot{\mathfrak{g}})$ is irred. hi wt $\widehat{\mathfrak{g}}$ -module of level c (resp. for $L_{c_1}(\mathfrak{sl}_N)$ and $Vir(c_2)$), Hyp_N^+ is a certain sub-VA of a lattice VA, and c_1, c_2 depend on $c, \mu \in \mathbb{C}$.

Multiloop Algebras

ġ fin. dim. simple L.A.

 $\sigma_0, \ldots, \sigma_N : \dot{\mathfrak{g}} \to \dot{\mathfrak{g}} \text{ commuting autos}$ of order m_0, \ldots, m_n , resp.

 $\mathbb{Z}^N \to G := \bigoplus_{i=0}^N (\mathbb{Z}/m_i\mathbb{Z})$ canon. map.

Decompose $\dot{\mathfrak{g}} = \bigoplus_{\mathbf{k} \in G} \dot{\mathfrak{g}}_{\overline{\mathbf{k}}}$ according to common eigenspaces for the σ_i .

Def: The multiloop algebra

$$L(\dot{\mathfrak{g}}, \sigma_0, \dots, \sigma_N) := \bigoplus_{\mathbf{k} \in \mathbb{Z}^N} \dot{\mathfrak{g}}_{\overline{\mathbf{k}}} \otimes \mathbf{t}^{\mathbf{k}}.$$

Thm [Allison-Berman-Faulkner -Pianzola, 2005 with Neher, 2004]: All EALAs (except for those of Type A over certain quantum tori) are obtained by adjoining skew-centroidal derivations and central elts to multiloop algebras.

Note that $\dot{\mathfrak{g}}_{\overline{0}} \otimes \mathbb{C}[t_0^{\pm m_0}, \dots, t_N^{\pm m_N}]$ $\subseteq L(\dot{\mathfrak{g}}, \sigma_0, \dots, \sigma_N) \subseteq \dot{\mathfrak{g}} \otimes \mathbb{C}[t_0^{\pm 1}, \dots, t_N^{\pm 1}]$

Thm [Benkart-Neher, 2005]: The uce of $L(\dot{\mathfrak{g}}, \sigma_0, \ldots, \sigma_N)$ can be determined from its centroid $C = \mathbb{C}[t_0^{\pm m_0}, \ldots, t_N^{\pm m_N}].$

Adding appropriate derivations to the uce of the multiloop algebra, we define the twisted toroidal EALA

$$\mathfrak{g}_{\mu\tau}(\sigma_0,\ldots,\sigma_N) := L(\dot{\mathfrak{g}},\sigma_0,\ldots,\sigma_N) \oplus \Omega_C^1/dC \oplus SCDer(C).$$

The autos σ_i extend to $\mathfrak{g}_{tor}^{\mu\tau}$ and its enveloping VA V. The fixed point set in $\mathfrak{g}(\mu\tau) \subseteq \mathfrak{g}_{tor}^{\mu\tau}$ under $G = \langle \sigma_i \mid 0 \leq i \leq N \rangle$ is $\mathfrak{g}(\mu\tau)^G = \mathfrak{g}_{\mu\tau}(\sigma_0, \dots, \sigma_N)$, whose representation theory we might expect to be related to the sub-vertex algebra V^G (an orbifold vertex algebra).

Modules for $\mathfrak{g}_{\mu\tau}(\sigma_0,\ldots,\sigma_N)$

Since $\mathfrak{g}_{\mu\tau}(\sigma_0,\ldots,\sigma_N) \subseteq \mathfrak{g}_{\mathrm{tor}}^{\mu\tau}$, the module $L_c(\dot{\mathfrak{g}}) \otimes \mathrm{Hyp}_N^+ \otimes L_{c_1}(\mathfrak{sl}_N) \otimes Vir(c_2)$ is a module for $\mathfrak{g}_{\mu\tau}(\sigma_0,\ldots,\sigma_N)$, but it need not be irreducible.

To describe irreducible modules, we define "thin coverings" of a module M for a Lie algebra \mathfrak{g} graded by G.

Def: A set of subspaces $\{M_k \mid k \in G\}$ is a covering of M if $\sum_{k \in G} M_k = M$ and $\mathfrak{g}_k \cdot M_\ell \subseteq M_{k+\ell}$ for all $k, \ell \in G$. The covering is <u>thin</u> if there is no covering $\{N_k\} \neq \{M_k\}$ with $N_k \subseteq M_k$.

Irreducible Modules

Let
$$\widehat{\mathfrak{g}}(\sigma_0) := \left(\bigoplus_{r \in \mathbb{Z}} \dot{\mathfrak{g}}_{\overline{r}} \otimes t_0^r\right) \oplus \mathbb{C}\mathbf{c}$$
.

Let L be irred hi wt module for $\widehat{\mathfrak{g}}(\sigma_0)$ of level c, with thin covering $\{L_{\overline{k}}\}$ relative to $H = \langle \sigma_1, \dots, \sigma_N \rangle$. Motivated by vertex algebra ideas, we obtain

Thm [Billig-Lau, 2005]: The space

$$(\bigoplus_{\mathbf{k}\in\mathbb{Z}^N} L_{\overline{\mathbf{k}}} \otimes \mathbf{t}^{\mathbf{k}})$$

$$\otimes \mathbb{C}[u_{pj}, v_{pj} \mid 1 \leq p \leq N, j \in \mathbb{Z}]$$

$$\otimes L_{c_1}(\mathfrak{sl}_N) \otimes Vir(c_2)$$

is an irreducible module for the twisted toroidal EALA $\mathfrak{g}_{\mu\tau}(\sigma_0,\ldots,\sigma_N)$.