MORE THAN EVERYTHING YOU WANT TO KNOW ABOUT CENTROIDS OF LIE ALGEBRAS

Georgia Benkart

I. Background and Motivation

 $\mathcal{A}:\quad \text{ an algebra over } \mathbb{F}$

$$Cent(\mathcal{A}) := \{ \phi \in End_{\mathbb{F}}(\mathcal{A}) \mid \phi(ab) = a\phi(b) = \phi(a)b \quad \forall a, b \in \mathcal{A} \}$$

is the **centroid** of \mathcal{A}

The centroid is useful

- to construct derivations
- to study forms of algebras

(e.g. for the Brauer group & division algebras for associative theory)

A Helpful Little Lemma

LEMMA If

- \mathcal{A} is an algebra over \mathbb{F}
- \mathcal{B} is a Cent(\mathcal{A})-invariant ideal of \mathcal{A} with Cent(\mathcal{B}) = Fid,

then

$$\operatorname{Cent}(\mathcal{A}) = \operatorname{\mathbb{F}id} \oplus \{\chi \in \operatorname{Cent}(\mathcal{A}) \mid \chi(\mathcal{B}) = 0\} \quad \text{so}$$

 $\mathbf{Cent}(\mathcal{A}) \cong \mathbb{F}\mathbf{id} \oplus \mathbf{Hom}_{\mathcal{A}/\mathcal{B}}(\mathcal{A}/\mathcal{B}, \mathbf{Ann}_{\mathcal{A}}(\mathcal{B}))$

 $(\operatorname{Ann}_{\mathcal{A}}(\mathcal{B}) \text{ is an } \mathcal{A}/\mathcal{B}\text{-module under} \quad (a+\mathcal{B})z = az)$

The Centroid of a Lie Algebra

 ${\mathcal L}~$ a Lie algebra over ${\mathbb F}$

$$Cent(\mathcal{L}) = \{ \phi \in End_{\mathbb{F}}(\mathcal{L}) \mid \phi([x, y]) = [x, \phi(y)] \quad \forall x, y \in \mathcal{L} \}$$
$$= End_{\mathcal{L}}(\mathcal{L})$$

Motivation for our investigations of the centroid:

E: extended affine Lie algebra with core K
(à la Allison, Azam, Berman, Gao, Pianzola)

 \mathcal{E}/\mathcal{K} <<u>nondegenerately paired</u>> $Z(\mathcal{E})$ (centre of \mathcal{E}) \mathcal{E}/\mathcal{K} built from Cent $(\mathcal{K}/Z(\mathcal{K}))$

Our joint work (#0502561) with E. Neher

describes $\operatorname{Cent}(\mathcal{L})$ for \mathcal{L} that are

(a) Lie algebras with a toral subalgebra (e.g. Kac-Moody algs.)

(b) Extended affine Lie algebras

- (c) Root-graded Lie algebras
- (d) Loop-like algebras

II. Lie Algebras \mathcal{L} with Toral Subalgebras \mathfrak{h} $\mathcal{L} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathcal{L}_{\alpha}$ where $\mathcal{L}_{\alpha} = \{x \in \mathcal{L} \mid [h, x] = \alpha(h)x \; \forall \; h \in \mathfrak{h}\}$ $\phi \in \operatorname{Cent}(\mathcal{L}) \Longrightarrow \phi(\mathcal{L}_{\alpha}) \subseteq \mathcal{L}_{\alpha} \text{ and } \phi(\mathfrak{h}) \subseteq Z(\mathcal{L}_0)$

THM. Let \mathcal{B} be a $Cent(\mathcal{L})$ -invariant ideal such that

- $\dim(\mathcal{B} \cap \mathcal{L}_{\alpha}) = 1$ for some α and
- the ideal of \mathcal{L} generated by $\mathcal{B} \cap \mathcal{L}_{\alpha}$ is \mathcal{B} .

Then (a) $\phi \mid_{\mathcal{B}} \in \mathbb{F}id_{\mathcal{B}} \quad \forall \phi \in Cent(\mathcal{L})$

(b) $\operatorname{Cent}(\mathcal{L}) = \operatorname{Fid} \oplus \operatorname{Hom}_{\mathcal{L}/\mathcal{B}}(\mathcal{L}/\mathcal{B}, \operatorname{C}_{\mathcal{L}}(\mathcal{B}))$

Application to Kac-Moody Lie Algebras

g: Kac-Moody Lie algebra with indecomposable Cartan matrix \mathfrak{A} generators: e_i, f_i, h_i relations: from \mathfrak{A}

 $\mathcal{B}:=\mathbf{g}^{(1)} \Longrightarrow \dim \left(\mathcal{B} \cap \mathbf{g}_{\alpha_i}\right) = 1 \text{ for } \mathbf{g}_{\alpha_i} = \mathbb{F}e_i$

THM. \implies **Cent**(g) = \mathbb{F} id \oplus **Hom**_{\mathbb{F}}(g/g⁽¹⁾, C_g(g⁽¹⁾))

Special cases:

 \mathfrak{A} invertible $\Longrightarrow \mathfrak{g} = \mathfrak{g}^{(1)} \Longrightarrow \operatorname{Cent}(\mathfrak{g}) = \mathbb{F}$ id

$$\mathfrak{A} \text{ affine} \Longrightarrow \mathfrak{g} = \mathfrak{g}^{(1)} \oplus \mathbb{F}d = \left(\mathfrak{g} \otimes \mathbb{F}[t, t^{-1}]\right) \oplus \mathbb{F}c \oplus \mathbb{F}d$$
$$\Longrightarrow \operatorname{Cent}(\mathfrak{g}) = \mathbb{F}id \oplus \operatorname{Hom}_{\mathbb{F}}\left(\mathbb{F}d, \mathbb{F}c\right)$$

Group-Graded Lie Algebras and a Little More

•
$$\mathcal{L} = \bigoplus_{\lambda \in \Lambda} \mathcal{L}^{\lambda}$$
 and $\Lambda = \operatorname{span}_{\mathbb{Z}} \{ \lambda \mid \mathcal{L}^{\lambda} \neq 0 \}$

- (|) nondegenerate symmetric invariant bilinear form on \mathcal{L}
- $\operatorname{SDer}(\mathcal{L}) = \{ \partial \in \operatorname{Der}(\mathcal{L}) \mid (\partial x \mid y) = -(x \mid \partial y) \quad \forall \ x, y \in \mathcal{L} \}$

•
$$\operatorname{grSDer}(\mathcal{L}) = \bigoplus_{\lambda \in \Lambda} \left(\operatorname{SDer}(\mathcal{L}) \right)$$

• $\mathcal{S} = \bigoplus_{\lambda \in \Lambda} \mathcal{S}^{\lambda}$ a graded subspace of $grSDer(\mathcal{L})$

•
$$\mathcal{S}^{\mathrm{gr}*} = \bigoplus_{\lambda \in \Lambda} \left(\mathcal{S}^{\lambda} \right)^{*}$$

•
$$\sigma_{\mathcal{S}}: \mathcal{L} \times \mathcal{L} \to \mathcal{S}^{gr*}$$

 $\sigma_{\mathcal{S}}(x,y)(d) = (dx \mid y) \qquad orall d \in \mathcal{S}, \; x,y \in \mathcal{L}$

• $\mathcal{K} = \mathcal{L} \oplus \mathcal{S}^{gr*}$ with $[x \oplus c, y \oplus c']_{\mathcal{K}} = [x, y] + \sigma_{\mathcal{S}}(x, y)$

 $\forall x, y \in \mathcal{L}, \text{ and } c, c' \in \mathcal{S}^{gr*}$

II. Extended Affine Lie Algebras

THM. (a) If $\mathcal{K} = \mathcal{L} \oplus \mathcal{S}^{gr*}$ is perfect, then $\operatorname{Cent}(\mathcal{K})^{\lambda} = 0 \quad \forall \lambda \neq 0$. (b) If \mathcal{K} is a Lie torus, then $\operatorname{Cent}(\mathcal{K}) = \mathbb{F}$ id.

THM. Assume

• \mathcal{E} is a *tame extended affine* Lie algebra

• \mathcal{K} is the ideal generated by \mathcal{E}_{α} with $(\alpha | \alpha) \neq 0$ (the **core**) Then (a) $\mathcal{K} \cong \mathcal{L} \oplus \mathcal{S}^{gr*}$ where $\mathcal{L} = \mathcal{K}/Z(\mathcal{K})$

(b) \mathcal{K} is a Lie torus

(c) Hence $\operatorname{Cent}(\mathcal{E}) = \mathbb{F} \operatorname{id} \oplus \operatorname{Hom}_{\mathcal{E}/\mathcal{K}}(\mathcal{E}/\mathcal{K}, Z(\mathcal{K}))$ (tame means $\operatorname{C}_{\mathcal{E}}(\mathcal{K}) = Z(\mathcal{K})$)

Affine Lie Algebras Revisited

• $\mathcal{E} = \mathbf{g} = \mathbf{g}^{(1)} \oplus \mathbb{F}d = \left(\mathbf{g} \otimes \mathbb{F}[t, t^{-1}]\right) \oplus \mathbb{F}c \oplus \mathbb{F}d$

•
$$\mathcal{K} = \mathbf{g}^{(1)} = \left(\mathbf{g} \otimes \mathbb{F}[t, t^{-1}] \right) \oplus \mathbb{F}c$$

- $Z(\mathcal{K}) = \mathbb{F}c$
- $\mathcal{E}/\mathcal{K} = \mathbb{F}d$

 $\operatorname{Cent}(\mathcal{E}) = \operatorname{\mathbb{F}id} \oplus \operatorname{Hom}_{\mathcal{E}/\mathcal{K}}(\mathcal{E}/\mathcal{K}, Z(\mathcal{K})) \text{ says}$ $\operatorname{Cent}(g) = \operatorname{\mathbb{F}id} \oplus \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}d, \mathbb{F}c)$

III. Root-graded Lie Algebras

 Δ : a finite irreducible root system (possibly nonreduced)

DEFN. A Lie algebra \mathcal{L} of char. 0 is graded by Δ if

(i) *L* contains a fin. dim'l split simple Lie algebra **g** = **h** ⊕ ⊕_{α∈Δ_g} **g**_α (the grading subalgebra);
(ii) **h** is a toral subalg. of *L* and *L* = ⊕_{α∈Δ∪{0}} *L*_α relative to **h**;
(iii) *L*₀ = ∑_{α∈Δ}[*L*_α, *L*_{-α}];
(iv) Δ_g = Δ if Δ ≠BC_r and Δ_g =B_r,C_r, or D_r if Δ = BC_r

Defn. due to Berman-Moody ('92) for Δ reduced and to Allison-B-Gao ('02) for $\Delta = BC_r$.

Structure of Root-graded Lie Algebras

For $\Delta \neq BC_r$:

• $\mathcal{L} = (\mathfrak{g} \otimes A) \oplus (W \otimes B) \oplus D$

W = 0 for simply-laced & W is "little adjoint" g-module otherwise

- $\mathfrak{a} = A \oplus B$ is the coordinate algebra
- ${\mathfrak a}\,$ is assoc., alternative, Jordan, or structurable depending on Δ
- $D = \langle \mathfrak{a}, \mathfrak{a} \rangle$ where $\langle \alpha, \beta \rangle(\gamma) = D_{\alpha,\beta}(\gamma)$ (inner derivation)

Examples of Root-graded Lie Algebras

- $\mathcal{L} = \mathbf{g}^{(1)} = \left(\mathbf{g} \otimes \mathbb{F}[t, t^{-1}] \right) \oplus \mathbb{F}c$ (affine)
- $\mathcal{L} = \left(\mathfrak{g} \otimes \mathbb{F}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]\right) \oplus C$ (toroidal)
- \mathcal{K} the core of an extended affine Lie algebra

Centroid of a Root-graded Lie Algebra

THM. If $\Delta \neq BC_r$, then

 $\operatorname{Cent}(\mathcal{L}) \cong \mathcal{Z}_{\mathfrak{a}}$ where

 $\mathcal{Z}_{\mathfrak{a}}$ is the set of elements $\mathfrak{z} \in Z(\mathfrak{a}) \cap A$ so

•
$$\langle \mathfrak{z}\alpha,\beta\rangle = \langle \alpha,\mathfrak{z}\beta\rangle \quad \forall \ \alpha,\beta \in \mathfrak{a}$$

•
$$\sum_t \langle \alpha_t, \beta_t \rangle = 0 \Longrightarrow \sum_t \langle \mathfrak{z} \alpha_t, \beta_t \rangle = 0$$

Map is $\mathfrak{z} \mapsto \Psi_{\mathfrak{z}}$ where (i) $\Psi_{\mathfrak{z}}(x \otimes a) = x \otimes \mathfrak{z}a$ (ii) $\Psi_{\mathfrak{z}}(w \otimes b) = w \otimes \mathfrak{z}b$ (iii) $\Psi_{\mathfrak{z}}(\langle \alpha, \beta \rangle) = \langle \mathfrak{z}\alpha, \beta \rangle = \langle \alpha, \mathfrak{z}\beta \rangle$ **Remark.** $\langle \mathfrak{a}, \mathfrak{a} \rangle = D_{\mathfrak{a}, \mathfrak{a}} \Longrightarrow \operatorname{Cent}(\mathcal{L}) = \mathcal{Z}_{\mathfrak{a}} = Z(\mathfrak{a}) \cap A.$ This is the case that \mathcal{L} is centreless.

Affine Lie Algebras Re-Revisited

•
$$\mathcal{L} = \mathbf{g}^{(1)} = (\mathbf{g} \otimes \mathbb{F}[t, t^{-1}]) \oplus \mathbb{F}c$$
 (affine)
• $\langle t^m, t^n \rangle = m \delta_{m, -n} c$
 $\mathbf{g} \in \mathcal{Z}_{\mathbf{a}} = Z(\mathbf{a}) \cap A = \mathbb{F}[t, t^{-1}]$ and $\langle \mathbf{g}a, a' \rangle = \langle a, \mathbf{g}a' \rangle$
From $\langle t^p t^m, t^n \rangle = \langle t^m, t^p t^n \rangle$ get
 $(m+p)\delta_{m+p, -n} = m \delta_{m, -p-n}$, which implies $p = 0$
Thus, $\mathbf{g} \in \mathbb{F}1$
 $\operatorname{Cent}(\mathbf{g}^{(1)}) = \mathbb{F}id$

Centroid of $\mathcal{A}\otimes\mathcal{B}$

 $\operatorname{End}_{\mathbb{F}}(\mathcal{A}) \otimes \operatorname{End}_{\mathbb{F}}(\mathcal{B}) \to \operatorname{End}_{\mathbb{F}}(\mathcal{A} \otimes \mathcal{B}),$ where $f \otimes g \mapsto f \widetilde{\otimes} g$ and $(f \widetilde{\otimes} g)(a \otimes b) := f(a) \otimes g(b).$

PROP.

- (a) If \mathcal{A} is perfect and \mathcal{B} is unital, then $\operatorname{Cent}(\mathcal{A}) \otimes \operatorname{Cent}(\mathcal{B}) \cong \operatorname{Cent}(\mathcal{A}) \widetilde{\otimes} \operatorname{Cent}(\mathcal{B}) \subseteq \operatorname{Cent}(\mathcal{A} \otimes \mathcal{B})$
- (b) If also, either
 - (i) \mathcal{A} is a finitely-generated $Mult(\mathcal{A})$ -module **OR**
 - (ii) $Cent(\mathcal{A}) = \mathbb{F}id$, then

 $\mathbf{Cent}(\boldsymbol{\mathcal{A}}\otimes\boldsymbol{\mathcal{B}})\cong\mathbf{Cent}\;(\boldsymbol{\mathcal{A}})\otimes\mathbf{Cent}(\boldsymbol{\mathcal{B}})$

(Allison-Berman-Pianzola '04) Prop. when \mathcal{A} is fin.gen. $Mult(\mathcal{A})$ -module and \mathcal{B} is unital comm. assoc.

Centroids and Forms

COR. If

- \mathcal{A} is perfect and $\operatorname{Cent}(\mathcal{A}) = \mathbb{F}$ id
- \mathcal{B} is unital commutative associative
- \mathcal{C} is unital subalgebra of \mathcal{B} and

 \mathcal{B} is a free \mathcal{C} -module with \mathcal{C} -basis containing 1

• $\mathcal{L} \otimes_{\mathcal{C}} \mathcal{B} = \mathcal{A} \otimes_{\mathbb{F}} \mathcal{B}$, *i.e.* \mathcal{L} *is a* \mathcal{C} -form of $\mathcal{A} \otimes_{\mathbb{F}} \mathcal{B}$,

then $\operatorname{Cent}(\mathcal{L}) = \mathcal{C}$ id

Centroid of an Twisted Loop Algebras

Example:

- \mathcal{A} : Lie algebra with automorphism σ of period m
- $\mathcal{A}_i := \{ a \in \mathcal{A} \mid \sigma(a) = \zeta^i a \}, \quad \zeta \text{ primitive } m \text{th root of } 1$

•
$$\mathcal{C} := \mathbb{F}[t^m, t^{-m}] \subset \mathcal{B} = \mathbb{F}[t, t^{-1}]$$

(Allison-Berman-Pianzola '04) $\mathcal{L}(\mathcal{A},\sigma) := \bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i \otimes t^i \text{ is } \mathcal{C}\text{-form of } \mathcal{A} \otimes \mathcal{B}.$

So, $\operatorname{Cent}(\mathcal{L}(\mathcal{A},\sigma)) = \mathcal{C}$ id