Monte Carlo Tests of Conformal Invariance and SLE predictions for Self-Avoiding Walks

Tom Kennedy
University of Arizona
tgk@math.arizona.edu

- 0. Introduction
- 1. SLE predictions 2D SAW
- 2. SLE predictions 2D Weakly SAW
- 3. Wrong conformal invariance 2D SAW
- 4. Conformal invariance 2D SAW
- 5. Conformal invariance projected 3D SAW

0. Introduction - def of SAW

The self-avoiding walk is defined as follows.

Fix N, the number of steps.

Take all nearest neighbor walks starting at 0 with no self-intersections.

$$\omega(i) \in \mathbf{Z}^2, \quad i = 0, 1, 2, \dots N$$

$$\omega(0) = 0$$

$$|\omega(i) - \omega(i+1)| = 1$$

$$\omega(i) \neq \omega(j), \quad i \neq j$$

Give them equal probability.

Critical exponents:

$$E\left[|\omega(N)|^2\right] \sim N^{2\nu}$$

Conjecture: $\nu = 3/4$ in 2D.

0 = 3

Half-Plane:

Scaling limits:

One we do not use:

Look at $N^{-\nu}\omega$ as $N\to\infty$.

This should give a measure on curves in \mathbb{R}^2 that start at 0 and end at some random point.

One we do use:

First let $N \to \infty$ to get a measure on infinite walks on \mathbb{Z}^2 .

Then let lattice spacing go to 0.

This should give a measure on curves in \mathbb{R}^2 that start at 0 and go to ∞ .

No simple relation between the two

Half-plane

Simulating the SAW

We use the pivot algorithm

Markov chain Monte Carlo algorithm

State space = all N-step SAW's

Find a Markov chain (transition matrix) such that its stationary distribution is the uniform distribution on SAW's with N steps.

Limitations:

Cannot fix the endpoint of the walk Ergodic only in certain domains, e.g., half-plane

Another method - PERM

1. Tests of SLE predictions for the 2D SAW

For each $\kappa < 4$, chordal SLE gives a probability measure on curves in the upper half plane that go from 0 to ∞ .

Conjecture (Lawler, Schramm, Werner)

The scaling limit of the SAW in a half-plane is chordal SLE with $\kappa = 8/3$.

They show that if the scaling limit exists and is conformally invariant, then it is $SLE_{8/3}$.

Thm (LSW) For $SLE_{8/3}$ in the half-plane $P(\gamma \cap A) = \Phi'(0)^{5/8}$

Y = lowest intersection with vert. line

$$P(Y \le t) = P(\gamma \quad hits \quad \boxed{\uparrow^{\epsilon}})$$

= 1 - $\Phi'_{A_t}(0)^{5/8} = 1 - (1 + t^2)^{-5/16}$

Example:

 $\Theta = \mathrm{smallest}$ polar angle of intersects

$$P(\Theta \le t) = 1 - \left(\frac{1 + \cos t}{2}\right)^{5/4}, c = 0$$

Scaling Limit

With lattice spacing=1, size of typical walk is order N^{ν} .

Scaling limit: $N \to \infty$ then $R \to \infty$.

Simulations:

 $l=R/N^{\nu}$

l is RV scale over walk scale

N fixed, several l's

l too small \Rightarrow see lattice effects

l too large \Rightarrow see finite length effects

2. Tests of SLE predictions - Weakly 2D SAW

Weakly self-avoiding walk:

parameter β

Take all N step walks starting at origin, allowed to self-intersect, but weighted by

$$\exp[-\beta \sum_{i < j} 1(\omega(i) = \omega(j))]$$

Believed that for all $\beta > 0$ this has same exponents and same scaling limit as SAW

3. Wrong conformal invariance - 2D SAW

What conformal invariance does not mean:

Let D be simply connected, $0 \in D$.

Let U be unit disc.

Let $\phi: D \to U$, $\phi(0) = 0$.

Full

Consider infinite SAW's w starting at 0.

t is time of first intersection of walk and ∂D .

 $\phi(\omega[0,t])$ is a path from 0 to ∂U .

If you do this with Brownian motion,

 $\phi(\omega[0,t])$ has the same distribution as a BM

from 0 until it exits U.

(Ignore parametrization)

 $\phi(\omega(t))$ is uniform on unit circle for BM.

4. Conformal invariance - 2D SAW

Conformal invariance \Rightarrow SLE Seen MC tests of SLE predictions

Can test conformal invariance directly

Simulate the SAW in half-plane minus something, conformally map this "perturbed" half-plane to the half-plane.

Compare resulting measure on half-plane with original SAW measure on half-plane.

Our "perturbation" is to remove an arc:

2D SAW: Smallest hit, 90 deg arc cdf minus no arc cdf, 1000K, 29B iterations

5. Conformal invariance - projected 3D SAW

Take the 3D SAW in the half-space (y > 0) and project it onto the x-y plane.

Result is a 2D curve with self-intersections.

Is it conformally invariant?

Why the *%? should it be?

If it is, it is a LSW "conformal-restriction" measure, and we have

$$P(\Gamma \cap A) = \Phi'(0)^a$$

for some $a \geq 5/8$.

You can fit it extremely well with the CR measures with $a \approx 0.83$.

Projected 3D SAW: smallest hit, 90 deg arc cdf minus no arc cdf, 400K, 2.0B iterations 0.001 "ex12-54" "ex13-55" -0.001 -0.002 -0.003 P(Theta_s < t) -0.004 -0.005 -0.006 -0.007 -0.008 -0.009 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 0