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0. Introduction - def of SAW

The self-avoiding walk is defined as follows.
Fix N, the number of steps.
Take all nearest neighbor walks starting at (
with no self-inftersections.

w(i) e Z?, i=0,1,2,.--N

w(0) =0

lw(@) —w(i+1)| =1

w(i) #w(j), 1#7]
Give them equal probability.
Critical exponents:

B [lw(N)[2] ~ N2

Conjecture: v = 3/4 in 2D. o= W

Half-Plane:




Scaling limits:

One we do not use:

Look at N ~Yw.as N = oo.

This should give a measure on curves in R?

that start at 0 and end at some random point.

One we do use:

First let NV — o0 to get a measure on infinite
walks on Z2.

Then let lattice spacing go to 0.

This should give a measure on curves in R?

that start at 0 and go to oc.
No simple relation between the two

Half-plane
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Simulating the SAW

We use the pivot algorithm

Markov chain Monte Carlo algorithm
State space = all N-step SAW's
Find a Markov chain (transition matrix) such
that its stationary distribution is the uniform

distribution on SAW's with N steps.

Limitations:

(Jannot fix the endpoint of the walk
Ergodic only in certain domains,

c.g., half-plane

Another method - PERM



1. Tests of SLE predictions for the 2D SAW

For each & < 4, chordal SLE gives a probabil-
ity measure on curves in the upper half plane
that go from 0 to oo.

Conjecture (Lawler, Schramm, Werner)
The scaling limit of the SAW in a half-plane
is chordal SLE with x = &/3.

They show that if the scaling limit exists and

is conformally invariant, then it is SLEg /3.

Thm (LSW) For SLEg,3 in the half-plane
P(yn A) = &'(0)%/8
= ¢

3(H~A)
— 3 > o B
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Example:
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Theta, 4M slep SAW in hall plane, 478 iterations, red=5SLE, blue=SAW
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Scaling Limit
With lattice spacing=1, size of typical walk

is order NV”.

«— R —3

Scaling limit: N — oo then R — oo.

Simulations:
=R N
[ is RV scale over walk scale
N fixed, several l's
[ too small = see lattice effects

[ too large = see finite length effects
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P(Theta « 1)
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Y, SAW cdf - SLE cdf, 4M step SAW in half plane, 478 iterations
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2. Tests of SLE predictions - Weakly 2D SAW

Weakly self-avoiding walk:
paraieter 3
Take all N step walks starting at origin, al-
lowed to self-intersect, but weighted by
exp(—f 2 _;; Hw(i) = w(j))]
Believed that for all § > 0 this has same

exponents and same scaling limit as SAW



Sealing limit of Weakly SAW (beta=0.5]
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P(Z e <t}

3.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.001

-0.001

Z_e, 100K step WSAW[beta=0.2] in half plane, 1.88B iterations




3. Wrong conformal invariance - 2D SAW

What conformal invariance does not mean:

Let D be simply connected, 0 € D.

Let U be unit disc. il
Let ¢ : D — U, #(0) = 0. plane
Consider infinite SAW’s w starting at 0.

t is time of first intersection of walk and JD.
P(wl0, t]) is a path from 0 to OU.

If yvou do this with Brownian motion,

P(w(0, £]) has the same distribution as a BM
from 0 until it exits U.

(Ignore parametrization )

(w(t)) is uniform on unit circle for BM.




Oiistribution of exit angle of Phi{w(t))
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4. Conformal invariance - 2D SAW

Conformal invariance = SLE
seen MC tests of SLE predictions

Can test conformal invariance directly

Simulate the SAW in half-plane minus some-
thing, conformally map this “perturbed”
half-plane to the half-plane.

Compare resulting measure on half-plane
with original SAW measure on half-plane.

Our “perturbation” is to remove an arc:

W c}“‘

u..«l'r’ll‘i“?4

$(H~a) > tH
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5. Conformal invariance - projected 3D SAW
Take the 3D SAW in the half-space (y > 0)

and project it onto the z-y plane.
Result is a 2D curve with self-intersections.
Is it conformally invariant?
Why the *%&7 should it be ?
If it is, it is a LSW “conformal-restriction”
measure, and we have
P(I'n A) = d'(0)°
for some a > 5/8.
You can fit it extremely well with the CR

measures with a =~ (0.83.



Projection of 3d 100K step SAW (blua=walk, red=hull)
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Projecled 2D SAW: smallest hit, 80 deg arc cdf minus no arc cdf, 400K, 2.0B iterations
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