NewD irections in Probability Theory

Better Coupling, Less Effort

Tom Hayes, UC Berkeley
Eric Vigoda, Georgia Tech







General Setting

Q: finite state space (exponential in n)

Tt a distribution over Q

Goal: Approximately sample from Ttin
time poly(n)

Related problems: approximate counting,
estimating partition functions.




Typical Setting

Q: finite state space (exponential in n)

Tt a distribution over Q
Have a simple ergodic Markov chain with
stationary distribution Tt

Goal: prove "mixing time" is poly(n)







Mixing Time

Xo, X4, ..., X;, ... distributed as the M.c.
Chain has mixed wheny X, -Ty |, < .

Mixing time = min {t : OX,, Y X;- Ty 1y <
1
7}

Notes: can't replace [0 with a.a.
Perhaps we can only find very weird X;'s







Coupling

A technique for proving fast mixing
Easy, well-known (Doeblin, 1937)

Constructive, explicit

- Inductively matches up t-step distributions
from different starts.

- Exact sampling: "Coupling from the Past"”
General (at least in principle)
Often yields intuitive proofs




Coupling

For all X,, Y, specify joint distribution of
Xi, s Xor s Yo o Yy, o

so that, separately, (X,) and (Y;) are the
given M.c.

Design to "coalesce”: once X.=Y., then for
all +'> t, X,=Y,

Mixtime min {t: OX,, Y, Pr(Xy! Y.)< £}




One-Step Construction

For all X,, Y, specify joint distribution of
X,, Y, consistent with the M.c.

Inductively evolve (X;Y;) (X,,Y,)
using the same rule.

Prove E(P(X1,Y1)|Xo,Y0) < (1-€) p(Xo.Yo).
where p is integer-valued metric.

Conclude bound on mixing time.
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Path Coupling Construction

Suppose p is a path meftric.
For edges (X,,Y,) specify distribution of
(X,,Y,) consistent with the M.c.

Prove E(p(X;.Y)IXo.Yo) < 1-€.

“Composition along paths” yields explicit
one-step coupling.
Conclude bound on mixing time.
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Burn Away the Worst

In coupling, must prove [0X,,Y,
E(P(X1.Y1)1X0.Y0) < (1-€) p(Xo.,Yo)

As before, [J cannot be replaced by a.a.

DyerédFrieze STOC'01: suppose 0X,,Y,

a.a. E(P(Xg.1,Ys.1)| X5, Y5) < (1-€) p(X;,Ye)
where B is a burn-in period.

Conclude bound on coupling time.
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Comments

Dyerd&Frieze's method produces sharper
results than traditional coupling can.

Requires clever and careful analysis of
the M.c.

So far, applied very successfully to graph
colorings, but not much else.

Compatible with Path Coupling (with
extra care)
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Coupling w/ Stationarity

Suppose we can prove a.a. Xy, 0 Y,

E(P(X1.YDIX0,Y0) < (1-€) p(Xo.Yo)
Conclude essentially same bound on

mixing time as for traditional coupling.

Idea: Fix Y,, sample X,~Tt Upper bound
E(p(X;, YY) inductively rather than
traditional E(p(X.,Y:)|Xo.Yo)
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Coupling w/ Stationarity

Need to prove a.a. X,, 0 Y,

E(P(X1,Y 1) X0,Y0) < (1-€) p(Xo.Y0)
Now we can sometimes replace burn-in
argument with analysis of Tt
Not compatible with Path Coupling: path

from typical X, to arbitrary Y, is not
mostly typical states.
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Example

For graph colorings X,.,Y,

E(P(X1.Y 1) X0.Y0) < (1-8) p(X5.Y0)

assuming all disagreeing verts have > A
colors available in X,.

Easy to check that random coloring of
triangle-free graph has this property.
Improves & simplifies "Girth 5" result of

Hayes (STOC '03).
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Coupling w/ Stationarity II

Suppose we can only prove a.a.X,, a.a.Y,

E(P(X1.Y1)1X0.Y0) < (1-€) p(Xo.,Yo)
Can we bound mixing time?

No! M.c. may not even be connected!

So what? Has a giant component, may mix
rapidly there.
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Coupling w/ Stationarity II

Suppose we can prove a.a.X,, a.a.Y,

E(P(X1.Y)[X0.Y0) < (1-€) p(X0.Yo)
We can show that if X,~., where |l is a
"warm start” to T (OX H(X) < 2T(X)),
theny X,-Ty 1, < (1-€)t max p + o(1)
Can use simulated annealing to get warm

starts algorithmically. Hybrid algorithm
for sampling. Not arbitrarily boostable.
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Limits of 1-step coupling

Sometimes the M.c. mixes rapidly, but
for every 1-step coupling, cannot prove

a.a.Xp, a.a.Yy,
E(P(X1.Y1)1X0.Y0) < (1-€) p(Xo.Y0)
Example: graph colorings (HV FOCS '03)

However, there is always a t-step
coupling, where t is the mixing time.

Hard to construct & analyze (see HV'03)
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Coupling w/ Stopping Time

Suppose we can prove [1X,,Y,

E(P(X+.Y1)1X0.Y0) < (1-€) p(X,,Yo),

where T is a stopping time, i.e., can be
computed as a function of

Xos- Xt Yo Y1
Can conclude a bound on mixing time.
In fact, more is true...
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Path Coupling w/ Stop. Time

Let p be a path metric.

For edges (X,,Y,) specify distribution of
TX.,.. X3.Yq,....Y+ consistent with the
M.c., where T is a stopping time.

Prove E(p(X+,Y1)1X0.Yo) < 1-€.

Conclude rapid mixing. (HV SODA '04).
Improved analysis possible even for one-
step couplings (e.g. graph colorings for

constant-degree graphs).
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Open Questions

Is this the final picture?
Applications besides Glauber dynamics?
Variable-length coupling from the past?
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Earlier Example

For graph colorings X,.,Y,

E(P(X1.Y 1) X0.Y0) < (1-8) p(X5.Y0)

assuming all disagreeing verts have > A
colors available in X,.

Easy to check that random coloring of
triangle-free graph has this property.




What's |AvailColors(z)| in a random k-coloring of
a triangle-free graph with max degree A?
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What's |AvailColors(z)| in a random k-coloring of
a triangle-free graph with max degree A?

Given a random k-coloring and a vertex z.

Fix the coloring F on V' \ N(z).

Simultaneously rechoose the colors for all w € N{z).
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What's |AvailColors(z)| in a random k-coloring of
a triangle-free graph with max degree A?

Given a random k-coloring and a vertex z.

Fix the coloring F on V' \ N(z).

Simultaneously rechoose the colors for all w € N{z).

For a vertex w and color ¢, let

0 otherwise

T(w, ) = { 1 if w is colored c

Look at

A =30 T (- I(w.e).

¢ weN(z)
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What's |AvailColors(z)| in a random k-coloring of
a triangle-free graph with max degree A?

Given a random k-coloring and a vertex z.

Fix the coloring F on V' \ N(z).

Simultaneously rechoose the colors for all w € N{z).

vAAF =Y T I(w, c)|F))

¢ weN(z)
Independent Uk
colors... - kl:[u};[(z) e, )l F))
Chernofft Ly
emofft  — TT (1 A(w))

W.h.p., A(z) = kexp(—A/Ek)
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What's |AvailColors(z)| in a random k-coloring of
a triangle-free graph with max degree A?

For A = Q(logn),k > A+ 2, with probability > 1- 1/n?,

for all vertices z,

[A(z)] > E(exp(=A/k) —¢€)
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