Multiple Imputation and Complex Survey Data

James Reilly
Dept of Statistics
University of Auckland

Workshop on Missing Data Toronto, August 2004

Overview

- Review multiple imputation (MI) and complex surveys
- Multiple imputation issues
 - Standard combining rules can cause problems
 - Estimating equation approach pros and cons
- Generalization to complex surveys
- Comparison of results
- Applications

Multiple Imputation

- Multiple imputation (or repeated imputation)
 - Widely used method for dealing with missing data
 - Impute for each missing value several times, based on a statistical model
 - Combine resulting imputed datasets to estimate variances
 - Naïve treatment of single imputation underestimates variances
 - Developed by Rubin (1987)
 - Standard combining rule gives variance as

$$T_D = \overline{W}_D + \frac{D}{D+1} B_D$$

• Requires just the analysis results for each imputed datasets (parameter estimates $\hat{\theta}_d$ and naïve variances W_d)

Multiple Imputation Issues

- Standard combining rules give biased variance estimates in some situations
 - See Fay (1991, 1996), Robins and Wang (2000),
 Nielsen (2003)
- Problems can arise when the imputer's or analyst's models are misspecified
 - I.e. when they differ from each other, or from reality
- Variances are commonly overestimated, but can also be underestimated

Survey Analysis in Practice

- Relationships between variables are often analysed crudely
 - Two-way cross-tabulations are ubiquitous
 - E.g. wine consumption by gender and other demographics
- Underlying statistical models are simple
 - Parameter estimates may be biased when reality is more complex
 - E.g. If wine consumption truly explained by age and gender, a model based only on gender may give biased estimates of the true gender effect
 - But unbiased variance estimates are still desired

Simulation Results – i.i.d. Data

- Survey example (from Reilly 2003)
 - i.i.d. data generated from survey's joint distribution of wine consumption (43% missing), gender, age and working status
 - Logistic regression models for wine consumption
 - Imputer used gender and age, analyst used gender only
 - Imputed values generated using parameter values drawn from the asymptotic distribution of the MLE (Little & Rubin 2002, p216)
 - Variance of gender parameter (m=5, n=1000):

Simulation Variance	Av. Variance Estimate	Relative RMSE
0.0377	0.0282	32%

- Schafer (1999), Barnard & Meng (1999) and SAS Institute (2004) advise the imputer to use all analysis variables
 - Above example shows this can still give poor results
 - A more nuanced discussion of the need for correctly specified models is given by Little and Rubin (2002)

Estimating Equation Approach

- Robins and Wang (2000) developed a new MI approach based on estimating equations
 - Gives asymptotically unbiased variance estimates
 - Even when imputer's and analyst's models are misspecified
 - But can be more variable than standard MI estimator
- Example from Robins and Wang (2000)
 - Regression through origin with heteroscedastic errors
 - Variance of slope of regression line (for m=5, n=100):

	Simulation	Average Variance	Relative
Method	Variance	Estimate	RMSE
Robins & Wang	0.0197	0.0188	36%
Standard MI (Rubin)	0.0197	0.0137	32%

EE Method and Sample Surveys

- Original estimating equation method has two disadvantages for routine survey use
 - Variance estimates cannot be calculated using just the imputed data
 - Requires information from the imputer's model as well
 - Assumes i.i.d. data
- In practice, surveys often require complex sample designs and estimators
 - E.g. cluster samples, weighting, stratification
- Methods for i.i.d. data will then typically underestimate sampling variance

Generalization to Complex Surveys

- Have adjusted Robins and Wang's formulae to account for complex sample designs, including
 - Cluster samples
 - Inverse probability weights
 - Stratification
 - Finite population correction
- Formulae on following slide ignores stratification and finite population correction for simplicity

Formulae for Complex Surveys

$$\begin{split} \hat{\Sigma} &= (\hat{\tau})^{-1} \hat{\Omega} (\hat{\tau}')^{-1} , \ \hat{\tau} = -w_{..}^{-1} \sum_{k=1}^{c} \sum_{i=1}^{c_k} w_{ik} \frac{\partial \bar{U}^{ik} (\hat{\beta})}{\partial \beta'} , \ \hat{\Omega} = \hat{\Omega}_1 + \hat{\Omega}_2 + \hat{\Omega}_3 , \\ \hat{\Omega}_1 &= \frac{n}{(c-1)w_{...}} \sum_{k=1}^{c} w_{.k} \left(\sum_{i=1}^{c_k} \bar{U}^{ik}\right)^{\otimes 2} , \ \hat{\Omega}_2 = \hat{\kappa} \hat{\Lambda} \hat{\kappa}' , \ \hat{\Omega}_3 = \frac{n}{(c-1)w_{...}} \sum_{k=1}^{c} w_{.k} (\hat{\kappa} \bar{D}^k \bar{\bar{U}}^{k'} + \{\hat{\kappa} \bar{D}^k \bar{\bar{U}}^{k'}\}') , \\ \hat{\kappa} &= \frac{1}{mw_{...}} \sum_{j=1}^{m} \sum_{k=1}^{c} \sum_{i=1}^{c_k} w_{ik} U^{ikj} (\hat{\psi}, \hat{\beta}) [S^{ikj}_{mis} (\hat{\psi})]' , \ \hat{\Lambda} &= \frac{n}{(c-1)w_{...}} \sum_{k=1}^{c} w_{..k} \bar{D}^{k \otimes 2} , \ \bar{D}^k &= \frac{1}{w_{...k}} \sum_{i=1}^{c_k} w_{ik} \hat{D}^{ik} , \\ \bar{\bar{U}}^k &= \frac{1}{w_{...k}} \sum_{i=1}^{c_k} w_{ik} \bar{U}^{ik} , \ \hat{D}^{ik} &= -\left[\frac{1}{w_{...}} \sum_{k=1}^{c} \sum_{i=1}^{c_k} w_{ik} \frac{\partial S^{ik}_{obs} (\hat{\psi})}{\partial \psi'}\right]^{-1} S^{ik}_{obs} (\hat{\psi}) , \\ S^{ikj}_{mis} &= \frac{\partial \log f \left(Y^{ikj} (\hat{\psi}) | Y^{ik}_R, R^{ik}, \psi\right)}{\partial \psi} \Big|_{\psi = \hat{\psi}} , \ \bar{U}^{ik} &= \bar{U}^{ik} (\hat{\psi}, \hat{\beta}) = \frac{1}{m} \sum_{j=1}^{m} U^{ikj} (\hat{\psi}, \hat{\beta}) , \\ U^{ikj} (\hat{\psi}, \hat{\beta}) &= u \{Y^{ikj} (\hat{\psi}), \hat{\beta}\} , \ w_{.k} &= \sum_{i=1}^{c_k} w_{ik} \ \text{and} \ w_{...} &= \sum_{k=1}^{c} \sum_{i=1}^{c_k} w_{ik} \end{pmatrix}$$

Comparison of Methods

- Simulation results for clustering and weighting
- Logistic regression models
 - Imputer using age and gender; analyst using gender only

	Simulation	Average Variance	Relative
Method	Variance	Estimate	RMSE
Extended Robins & Wang	0.0444	0.0416	10%
Standard MI (Rubin)	0.0445	0.0319	33%

- Same imputation model; analyst using working status

	Simulation	Average Variance	Relative
Method	Variance	Estimate	RMSE
Extended Robins & Wang	0.0184	0.0170	12%
Standard MI (Rubin)	0.0184	0.0320	86%

Comparison of Methods 2

- Imputer and analyst both using age and gender
 - Table shows results for gender parameter

		Average Variance	
Method	Variance	Estimate	RMSE
Naïve single imputation			
(complete data variance)	0.0537	0.0211	61%
Extended Robins & Wang	0.0457	0.0426	11%
Standard MI (Rubin)	0.0459	0.0326	34%

- Other simulations show extension usually has an absolute relative bias of less than 10%
 - However it can underestimate variances by approx. 20% when there are heavy weights or few clusters

Effect of Sample Design

Simulation Results for Clustered Designs with Weighting

Application 1

- 2000 National Readership Survey (first month)
 - 43% of values missing for wine drinking in last week
- Imputer: Logistic regression of wine consumption against gender and sex
- Analyst: Logistic regression of wine consumption against gender only

Method	\hat{eta}_1	$Var(\hat{\beta}_1)$
Extended Robins & Wang	0.2531	0.0407
Standard MI (Rubin)	0.2533	0.0256

Application 2

- 2001 National Crime Victims Survey
 - Measures incidence of victimisation
 - 63% of values missing for offence eligibility
- Multiple imputation with these models:
 - Imputer: Logistic regression of offence eligibility against offence type, gender, age, and living situation
 - Analyst: incidence of each type of (eligible) offence by gender, and also separately by age, ethnicity, NZSEI, employment status and living situation
- Will compare methods for this data

Conclusions

- Standard multiple imputation methods give biased variance estimates for common analyses of complex surveys
 - Underestimates of variance can occur naturally
- Extended estimating equation approach described here gives asympt'ly unbiased variance estimates
 - But more complex to implement than standard MI
 - Extension can underestimate variances when there are few clusters or heavy weights
- More research needed to understand bias & MSE

References

- Barnard, J. and Meng, X.-L. (1999). Application of multiple imputation in medical studies: from AIDS to NHANES, Stat. Methods Med. Res. 8, 17-36.
- Fay, R.E. (1991). A design-based perspective on missing data variance, in Proc. Survey Methods Section, ASA, 266-271.
- Fay, R.E. (1996). Alternative paradigms for the analysis of imputed survey data, JASA 91, 490-498.
- Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd Ed. Wiley.
- Nielsen, S.F. (2003). Proper and improper multiple imputation, Int. Stat. Review, 593-607.
- Reilly, J.L. (2003). An estimating equations technique for valid inference from imputed survey data, Bull. ISI 55.
- Robins, J.M. and Wang, N. (2000). Inference for imputation estimators, Biometrika 87, 113-124.
- Rubin, D.B. (1987). Multiple Imputation for Non-response in Surveys. Wiley, N.Y.
- Rubin, D.B. (1996). Multiple imputation after 18+ years, JASA 91, 473-489.
- SAS Institute (2004). SAS/STAT 9.1 User's Guide. SAS Publishing, Cary, N.C.
- Schafer, J.L. (1999). Multiple imputation: a primer, Stat. Methods Med. Res. 8, 3-15.