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Outline 
Introduction: Regression with missing 
covariates
Discuss possible solutions, all weighted 
averages of the score function with different 
weights: relate to importance sampling.
Provide simulations and attempt conclusions.
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The Regression Problem
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Example: Low Birthweight data
Risk factors involved in low-birthweight babies (e.g. 
Lawless, Kalbfleisch and Wild ,1999, Thompson et al, 
2001 )
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Missingness
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The ML estimating function
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Conditional Distribution           
f(x|v) unknown 

The term 
in estimating function is unknown since f(x|v) the 

conditional distribution of X given V is 
unknown.  f(x|v) is a nuisance parameter.

Pepe and Fleming (1991), Carroll and Wand 
(1991) use the empirical distribution of X|V 
for validated X only.
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Estimating Conditional Expectations
Suppose we want to estimate E[g(X)|Y=y,V=v].

Average g(X) over all validated observations with 
Y=y,V=v
Problem: There may be none!
Better: Average  g(X)w(X,y,v) over ALL validated X

where w satisfies
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Importance Imputation

(X,V) generated from h
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Approximating Conditional       
Expected value
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Examples: h and 
corresponding w
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The Resulting Estimating Function
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Iterative estimation of 
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Simulations: Linear Regression,          
V is a surrogate for X. 

.continuousor   values20or  6 into ddiscretize 
25.0  ,5.0  0.75,  ,9.0

1 ,1,0 ) validated120about (1000
),( ),1,0( are   and 

indep. ,...,1),,( is 

2
10

2
10

V

N
VXCorNVX

NiXNY ii

=
====

=
=+

ρ
σββ

ρ
σββ



16

Probability x is fully observed

)12  observed spercent x'(
]))3(exp[,1min(),( 5.0

≈
+−= − veyvyπ

y=-3

Rate of decrease depends on v
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Estimators

. replacing ith solution w squaresleast  usual  thelike Looks
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Methods compared to 
known  f(x|v) and MVN 
MLE case

i.e. maximum likelihood estimation of the 
regression parameters                    assuming 
the conditional distribution of X|V is known
or MLE assuming trivariate normality, all 
parameters unknown.
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Bias in intercept estimators
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Bias in slope estimators, discrete v (6 categories)
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More Estimators…bias in slope.
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Bias only gets worse as V has more 
categories (e.g. 20)
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Standard Dev of Estimators
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The simulations show…
CCB has substantial bias especially for low 
cor(X,V). Why?
CCB and Profile 1 puts weight only on x-
values with corresponding v equal.
Other methods requiring a model for f(x|v)
suffer less from this problem e.g.  allow 
weights on all validated x (profile 2&3)
Problem with support for f(x|v) for each v
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Example: 6 categories, missing values 

imputed using correct distribution 25.0=ρ
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Example: Values imputed by CCB
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Various methods for imputing x|v
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Continuous v, bias in the estimate of intercept
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Continuous v, Bias in the estimator of slope
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Normality. No Problem.
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CONCLUSIONS: The price of ignorance
When there is high correlation between x and v, most methods 
work reasonably well.
Significant bias occurs in most estimators, especially  for low
cor(X,V), especially CCB and profile if we restrict its support.
For low cor(X,V), profiles and regression weights permit 
reasonable efficiency, low bias. Profile robust against model 
failure.
Pooling categories of V or smoothing over V reduces bias and 
variance.
High price paid (bias/variance) in not using knowledge of the 
conditional distribution of x\v. Is this because of additional 
nuisance parameters? Adjust profile likelihood?
Bayesian: Gibbs sampling?


