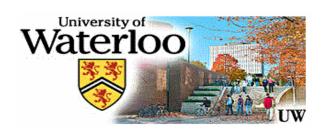


Outline

- Introduction: Regression with missing covariates
- Discuss possible solutions, all weighted averages of the score function with different weights: relate to importance sampling.
- □ Provide simulations and attempt conclusions.



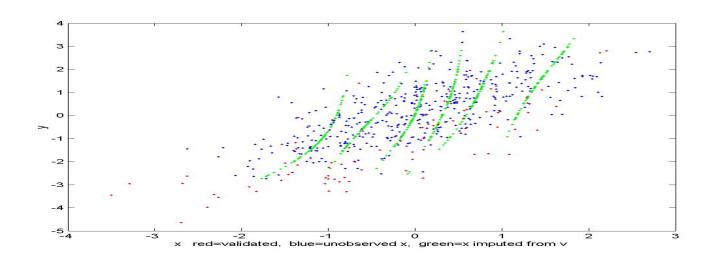
The Regression Problem

Y is response variable. Y has p.d.f. $f(y | x, v, \beta)$.

x, v are covariates. β is vector of unknown parameters.

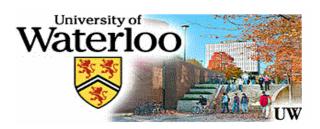
v is observed for all subjects

x is only observed for a subset (the validated sample)



Waterloo Waterloo Example: Low Birthweight data w

□ Risk factors involved in low-birthweight babies (e.g. Lawless, Kalbfleisch and Wild ,1999, Thompson et al, 2001)



Y = Birthweight of baby v = gestational age, sex, smoking habits and other routine hospital - collected covariates x = covariates of interest In simulations v is a surrogate for x.



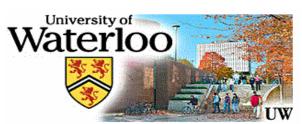
Missingness

x is "Missing at random" (MAR) (Little & Rubin, 2002): Probability of missing depends only on observed data.

 $\Delta = 1$ or 0 as x is observed or not. We assume $P(\Delta = 1 | y, x, v) = \pi(y, v)$ does not depend on x.

X may be missing by design (e.g. x=expensive covariate, v=surrogate) or by accident.

The function $\pi(y, v)$ is known.



The ML estimating function

For complete data, might use ML estimating function of the form

$$\sum_{i=1}^{N} S(y_i \mid x_i, v_i, \beta) \text{ with } S \text{ the score function}$$

$$S(y \mid x, v, \beta) = \frac{\delta}{\delta \beta} \ln f(y \mid x, v, \beta)$$

(or any unbiased estimating function - robust against misspecified f(x,v)) For incomplete data, project (condition) on observed data:

$$\sum_{i=1}^{N} \{ \Delta_{i} S(y_{i} \mid x_{i}, v_{i}, \beta) + (1 - \Delta_{i}) E[S(Y \mid X, V, \beta) \mid y_{i}, v_{i}] \}$$

This is MLEF for partially observed information.

Robins et. al. ('94,'95)



Conditional Distribution f(x/v) unknown

The term $E[S(Y|X,V,\beta)|y,v]$

in estimating function is unknown since f(x/v) the conditional distribution of X given V is unknown. f(x/v) is a nuisance parameter.

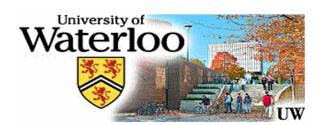
Pepe and Fleming (1991), Carroll and Wand (1991) use the empirical distribution of X/V for validated X only.

- \square Suppose we want to estimate E[g(X)/Y=y,V=v].
 - Average g(X) over all validated observations with Y=y,V=v

Problem: There may be none!

■ **Better:** Average g(X)w(X,y,v) over ALL validated X where w satisfies E[g(X)/Y = y, V = v] = E[g(X)w(X,y,v)]

Or impute values of X using some importance distribution.



Importance Imputation

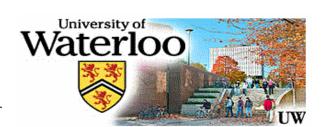
Notice that for arbitrary joint p.d.f. h(X, V) (which may depend on y, v and arbitrary density $K_v(V)$ which may depend on v, (X, V) generated from h

$$E[g(X)\frac{f(X|y,v,\beta)}{h(X,V)}K_v(V)] = \int \int g(X)\frac{f(X|y,v,\beta)}{h(X,V)}K_v(V)h(X,V)dXdV$$

$$= \int \int g(X)f(X|y,v,\beta)K_v(V)dXdV$$

$$= \int g(X)f(X|y,v,\beta)dX$$

$$= E_{\beta}[g(X)|y,v].$$



Approximating Conditional Expected value

Therefore we can approximate this conditional expectation with a weighted average of the self-normalized form

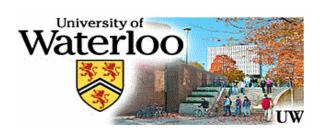
$$E_{\beta}[g(X)|y,v] \simeq \frac{\sum w_j g(X_j)}{\sum w_j}$$

where

$$w_{j} = w(x_{j}, v_{j}, y, v, \beta) \propto \frac{f(x_{j}|y, v; \beta)}{h(x_{j}, v_{j})} K_{v}(v_{j})$$

$$\propto \frac{f(y|x_{j}, v; \beta) f(x_{j}|v)}{h(x_{j}, v_{j})} K_{v}(v_{j})$$

Examples: *h* and corresponding *w*



12

Method	$h(\mathbf{x}_j, \mathbf{v}_j \mathbf{y}, \mathbf{v}) \propto$	$\mathbf{w}(\mathbf{x}_j, \mathbf{v}_j, \mathbf{y}, \mathbf{v}, \boldsymbol{\beta}) \propto$
Pepe and Fleming (91)*	$\Delta_j f(x_j, v)$	$\Delta_j f(y x_j, v; \beta)$
Reilly&Pepe(95): mean score*	$\Delta_j f(x_j y,v;\beta)$	Δ_j
Chatterjee, Chen, Breslow(03)*	$f(x_j v)\eta(x_j,v_j,\beta)$	$\frac{\Delta_j}{\eta(x_j,v,\beta)} f(y x_j,v,\beta)$
No-name	$f_x(x_j)E_{\beta}[\Delta_j x_j]$	$\frac{\Delta_j}{E[\Delta_j x_j]} f(y x_j, v; \beta) f(v x_j) K_v(v_j)$
Quasi-profile 1*	$f(x_j v)\eta(x_j,v_j,\beta)$	$\frac{\Delta_j}{\widehat{\eta}_P(x_j, v_j, \beta)} f(y x_j, v; \beta)$
Quasi-profile 2 (all x)	constant	$f(y x_j, v; \beta)\widehat{f}_{NP2}(x_j v)$
New Profile	constant	$f(y x_j, v; \beta)\widehat{f}_{NP3}(x_j v)$
Regression	$f_x(x_j)\eta(x_j,v_j,\beta)$	$\frac{\Delta_j}{\eta(x_j,v_j,\beta)} f(y x_j,v;\beta) \widehat{f}_N(v x_j) K_v(v_j)$
Copula 1	$f_x(x_j)\eta(x_j,v_j,\beta)$	$\frac{\Delta_j}{\eta(x_j, v, \beta)} f(y x_j, v; \beta) \widehat{f}_C(v x_j) K_v(v_j)$

where \widehat{f}_{NP1} , \widehat{f}_{NP2} , \widehat{f}_{NP3} are nonparametric MLE of the conditional distribution, differing only in the assumed supporting values of x, \widehat{f}_N approximates using bivariate normality, \widehat{f}_C using Copula.

the symbol \propto indicating up to a factor involving y, v. The trailing factor $K_v(v_j)$ can be used to localize an approximation. Discrete cases in which $K_v(v_j)$ is assumed $I(v_j = v)$ are labelled with * and it is left out of the weight function. Modified Chatterjee, copula, profile, etc. refer to a Gaussian kernel,

$$K_v(v_j) \propto \exp\{-\mathbf{c}(\mathbf{v}_j - v)^2\}.$$

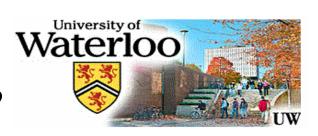
The Resulting Estimating Function

$$\sum_{i=1}^{N} \{ \Delta_{i} S(y_{i} \mid x_{i}, v_{i}, \beta) + (1 - \Delta_{i}) \hat{E}[S(Y \mid X, V, \beta) \mid y_{i}, v_{i}] \}$$

where \hat{E} is an estimator of the conditional expectation of the form

$$\hat{E}[S(Y | X, V, \beta) | y, v] = \sum_{j} w(x_{j}, v_{j}, y, v, \beta) S(y | x_{j}, v, \beta).$$

Weights, $w(x_j, v_j, y, v, \beta)$, are normalized to have sum 1.



Iterative estimation of β

Weights $w(x_j, y, v, \beta)$ depend on β . Use iterative scheme:

 β_{n-1} = estimate of β from (n-1)' st iteration.

- 1) Get weights $w(x_j, y, v, \beta_{n-1})$
- 2) Solve estimating equation for β_n .

Simulations: Linear Regression, V is a surrogate for X.

$$Y_i \text{ is } N(\beta_0 + \beta_1 X_i, \sigma^2), i = 1,..., N \text{ indep.}$$

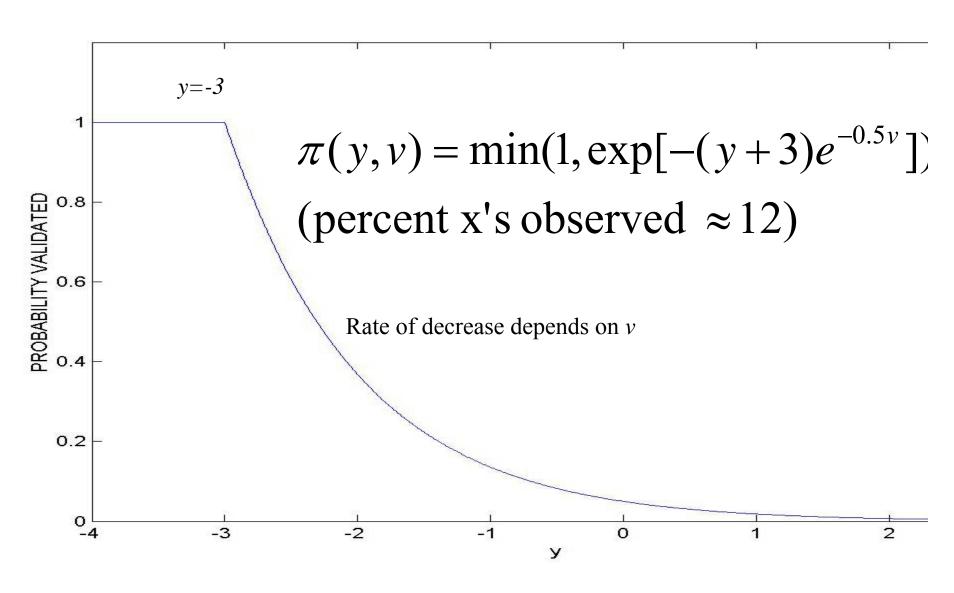
X and V are
$$N(0,1)$$
, $Cor(X,V) = \rho$

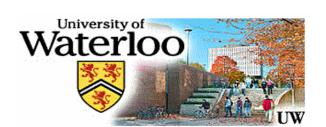
$$N = 1000$$
 (about 120 validated) $\beta_0 = 0, \beta_1 = 1, \sigma^2 = 1$

$$\rho = 0.9, 0.75, 0.5, 0.25$$

V discretized into 6 or 20 values or continuous.

Probability x is fully observed.





Estimators of β_0, β_1 .

$$S(y \mid x, v, \beta) = -\frac{(y - \beta_0 - \beta_1 x)}{\sigma^2} \begin{pmatrix} 1 \\ x \end{pmatrix}$$

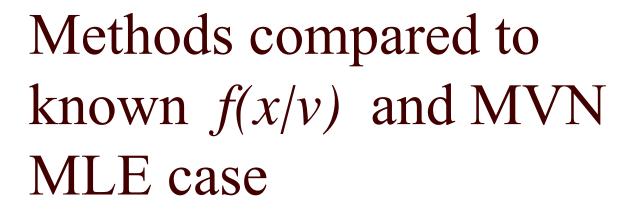
$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = \begin{pmatrix} N & \sum_{i=1}^{\infty} \tilde{x}_i \\ \sum_{i=1}^{\infty} \tilde{x}_i & \sum_{i=1}^{\infty} \tilde{x}_i^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i=1}^{\infty} y_i \\ \sum_{i=1}^{\infty} \tilde{x}_i y_i \end{pmatrix}$$

where

$$\overset{\sim}{\mathbf{x}_{i}} = \Delta_{i} g x_{i} + (1 - \Delta_{i}) \hat{E} [X \mid y_{i}, v_{i}] \text{ and}$$

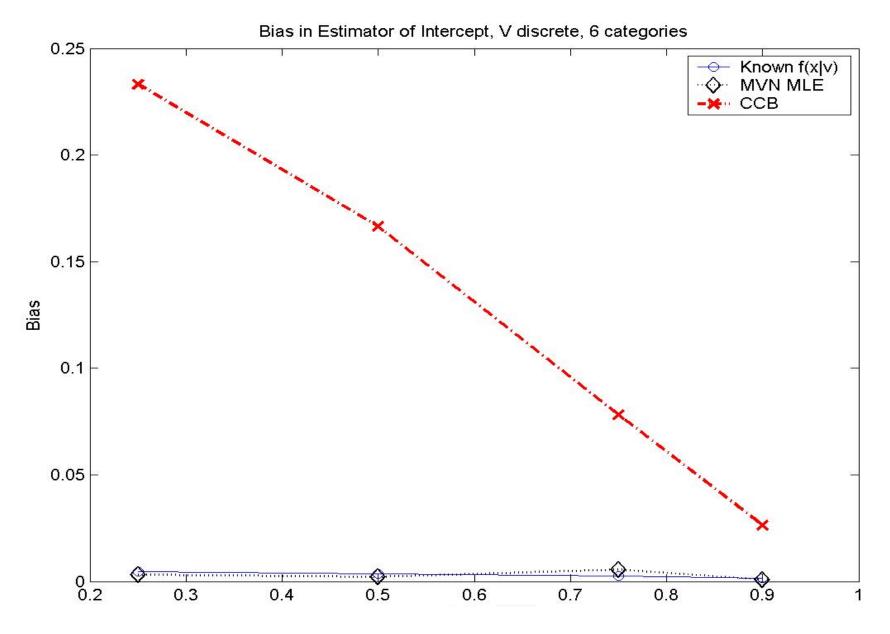
$$\overset{\sim}{\mathbf{x}_{i}^{2}} = \Delta_{i} x_{i}^{2} + (1 - \Delta_{i}) \hat{E} [X^{2} \mid y_{i}, v_{i}]$$

Looks like the usual least squares solution with x_i replacing $\overset{17}{X}_i$.

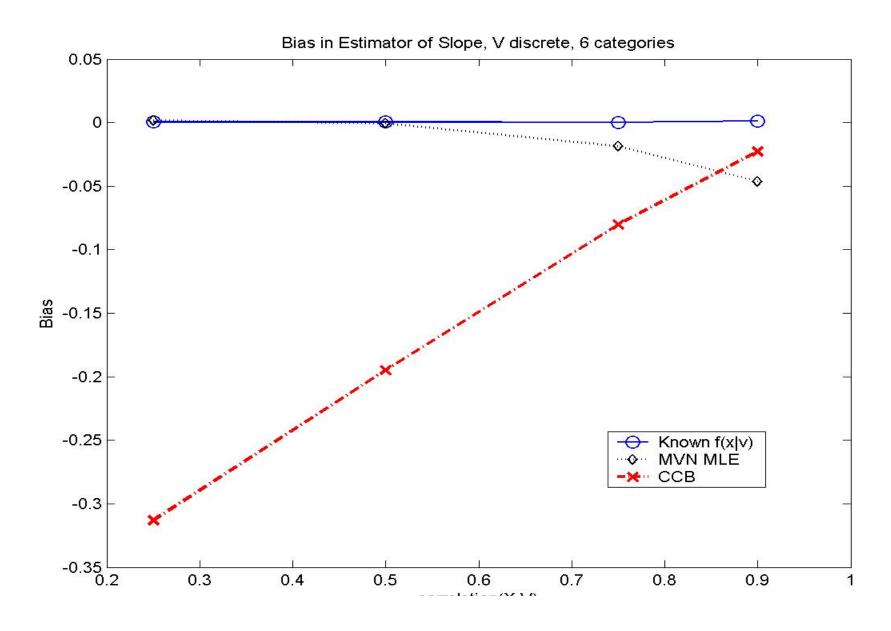


- i.e. maximum likelihood estimation of the regression parameters $\beta_0, \beta_1, \sigma^2$ assuming the conditional distribution of X/V is known
- □ or MLE assuming trivariate normality, all parameters unknown.

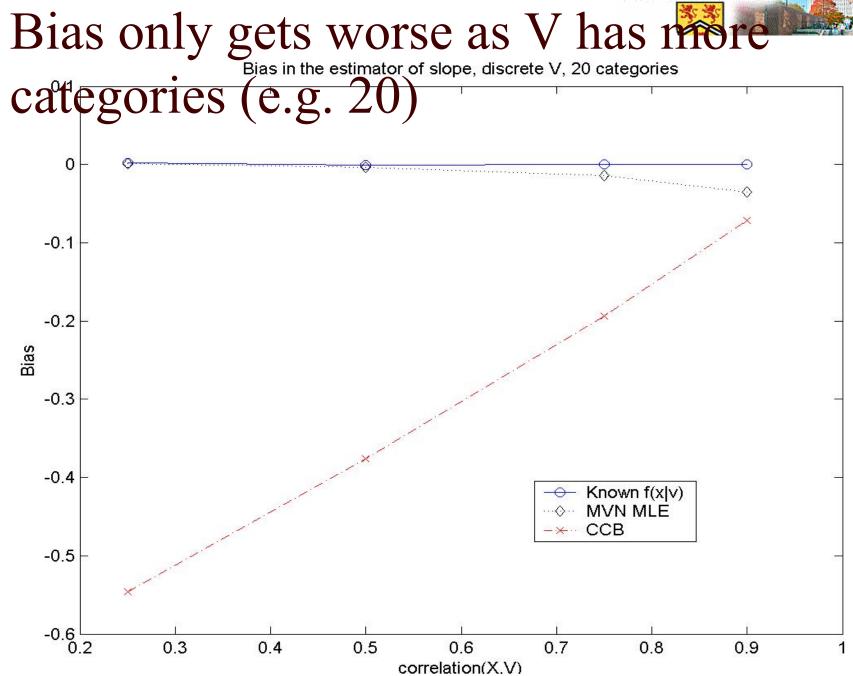
Bias in intercept estimators

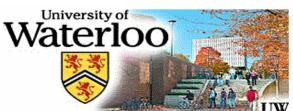


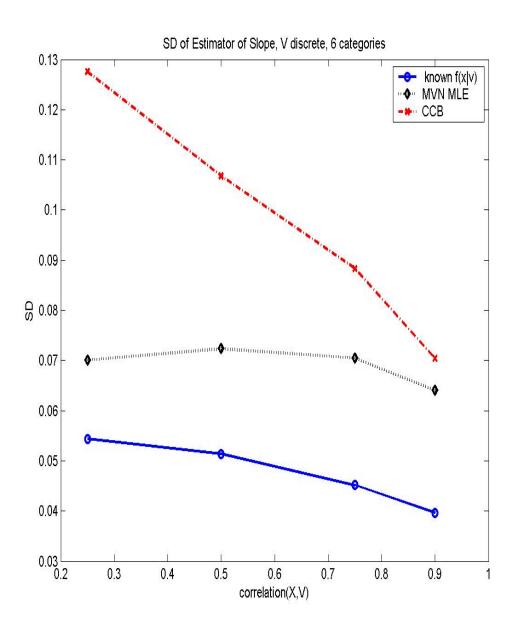
Waterloo Bias in slope estimators, discrete v (6 categories) University of Waterloo

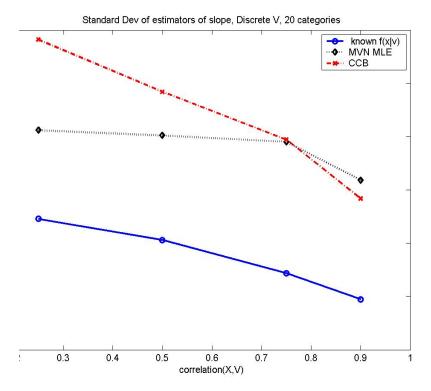


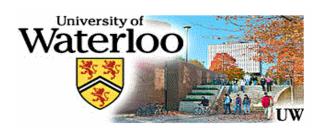
More Estimators...bias in slope.











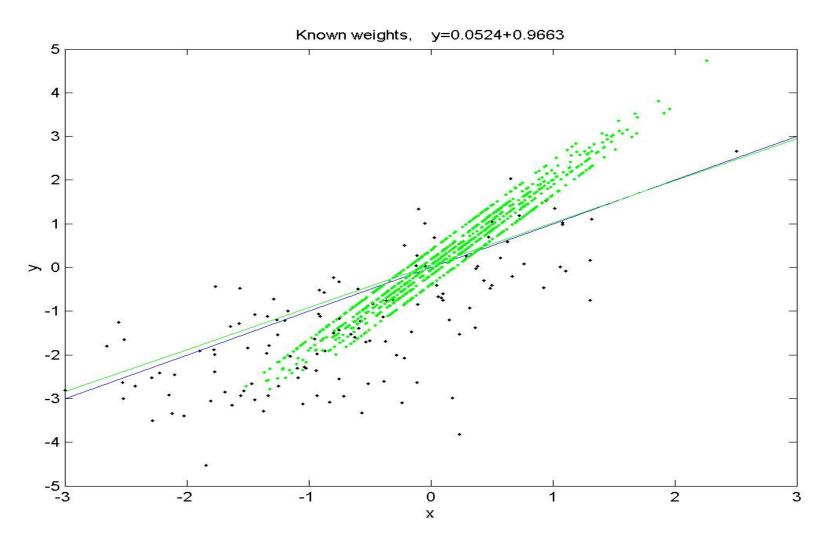
The simulations show...

- \square CCB has substantial bias especially for low cor(X,V). Why?
- \square CCB and Profile 1 puts weight only on x-values with corresponding v equal.
- Other methods requiring a model for f(x/v) suffer less from this problem e.g. allow weights on all validated x (profile 2&3)
- \square Problem with support for f(x/v) for each v

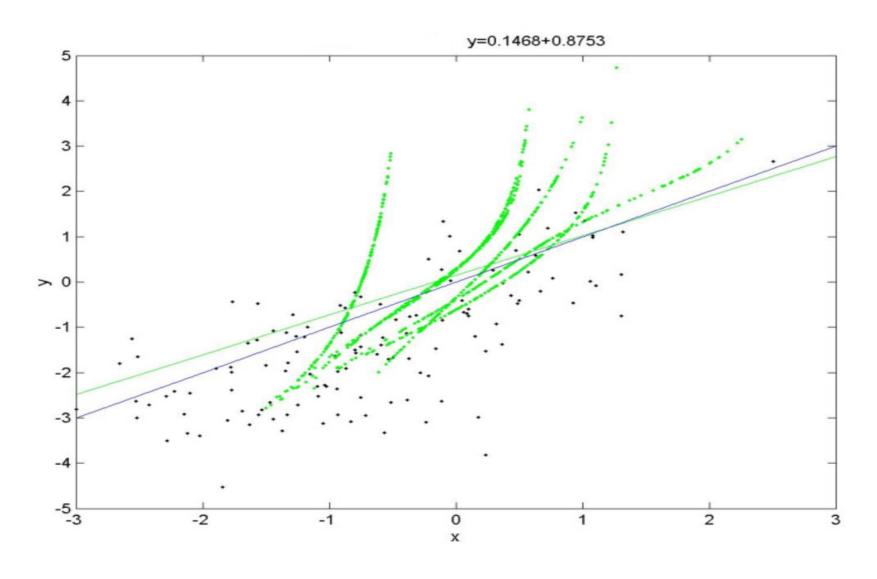
Example: 6 categories, missing values

imputed using correct distribution

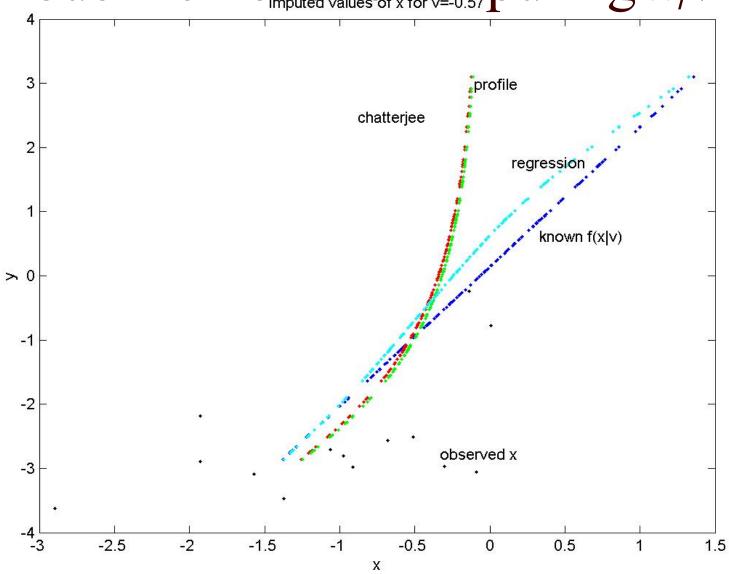
$$\rho = 0.25$$



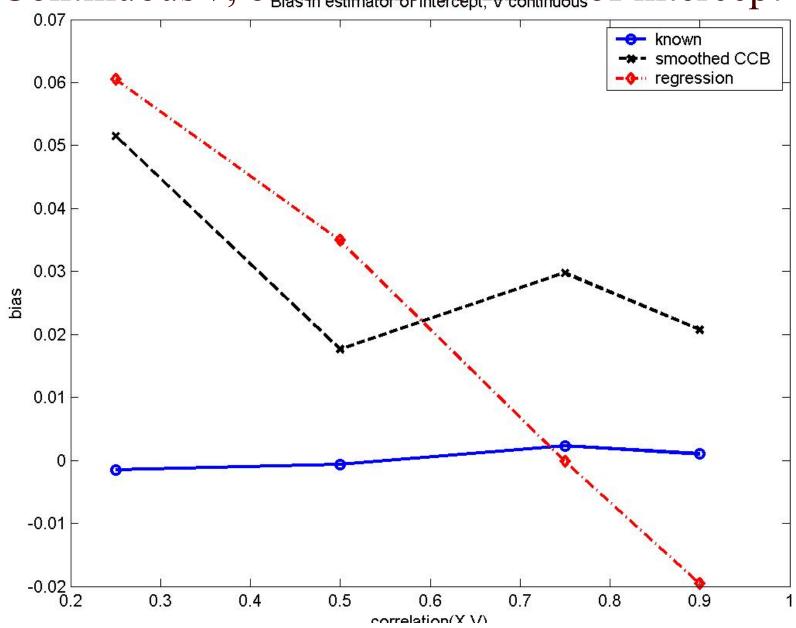
Example: Values imputed by CCB



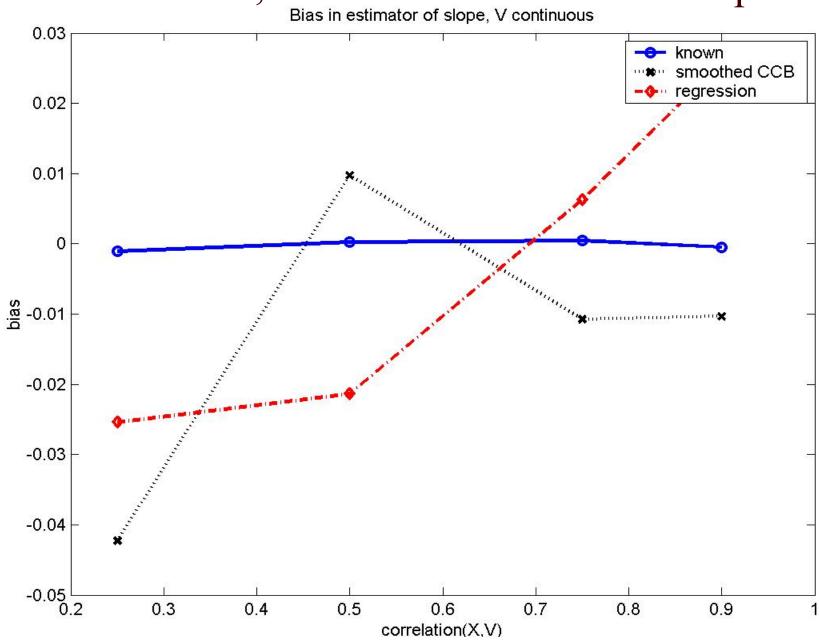
Various methods for imputing x/v



Continuous v, bias in the estimate of intercept

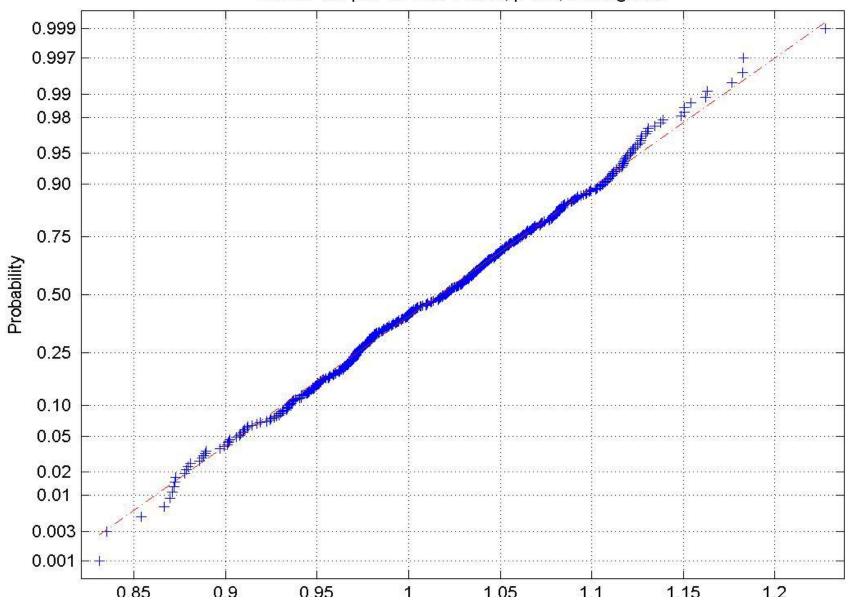


Continuous v, Bias in the estimator of slope Bias in estimator of slope, V continuous



Normality. No Problem.

Normal QQ plot for New Profile, p=0.9, 6 categories



- When there is high correlation between x and v, most methods work reasonably well.
- Significant bias occurs in most estimators, especially for low cor(X, V), especially CCB and profile if we restrict its support.
- For low cor(X, V), profiles and regression weights permit reasonable efficiency, low bias. Profile robust against model failure.
- □ Pooling categories of *V* or smoothing over *V* reduces bias and variance.
- □ High price paid (bias/variance) in not using knowledge of the conditional distribution of $x\v$. Is this because of additional nuisance parameters? Adjust profile likelihood?
- □ Bayesian: Gibbs sampling?