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Outline 
� Introduction: Regression with missing 

covariates
� Discuss possible solutions, all weighted 

averages of the score function with different 
weights: relate to importance sampling.

� Provide simulations and attempt conclusions.
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The Regression Problem
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Example: Low Birthweight data
� Risk factors involved in low-birthweight babies (e.g. 

Lawless, Kalbfleisch and Wild ,1999, Thompson et al, 
2001 )
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Missingness
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The ML estimating function
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Conditional Distribution           
f(x|v) unknown 

The term 
in estimating function is unknown since f(x|v) the 

conditional distribution of X given V is 
unknown.  f(x|v) is a nuisance parameter.

Pepe and Fleming (1991), Carroll and Wand 
(1991) use the empirical distribution of X|V 
for validated X only.
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Estimating Conditional Expectations
� Suppose we want to estimate E[g(X)|Y=y,V=v].
� Average g(X) over all validated observations with 

Y=y,V=v
Problem: There may be none!

� Better: Average  g(X)w(X,y,v) over ALL validated X
where w satisfies
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Importance Imputation

(X,V) generated from h
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Approximating Conditional       
Expected value
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Examples: h and 
corresponding w
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The Resulting Estimating Function
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Iterative estimation of 
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Simulations: Linear Regression,          
V is a surrogate for X. 
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Probability x is fully observed

)12  observed spercent x'(
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Rate of decrease depends on v
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Estimators
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Methods compared to 
known  f(x|v) and MVN 
MLE case

� i.e. maximum likelihood estimation of the 
regression parameters                    assuming 
the conditional distribution of X|V is known

� or MLE assuming trivariate normality, all 
parameters unknown.
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Bias in intercept estimators
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Bias in slope estimators, discrete v (6 categories)
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More Estimators…bias in slope.
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Bias only gets worse as V has more 
categories (e.g. 20)
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Standard Dev of Estimators
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The simulations show…
� CCB has substantial bias especially for low 

cor(X,V). Why?
� CCB and Profile 1 puts weight only on x-

values with corresponding v equal.
� Other methods requiring a model for f(x|v)

suffer less from this problem e.g.  allow 
weights on all validated x (profile 2&3)

� Problem with support for f(x|v) for each v
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Example: 6 categories, missing values 

imputed using correct distribution 25.0=ρ
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Example: Values imputed by CCB
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Various methods for imputing x|v
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Continuous v, bias in the estimate of intercept
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Continuous v, Bias in the estimator of slope
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Normality. No Problem.



31

CONCLUSIONS: The price of ignorance
� When there is high correlation between x and v, most methods 

work reasonably well.
� Significant bias occurs in most estimators, especially  for low

cor(X,V), especially CCB and profile if we restrict its support.
� For low cor(X,V), profiles and regression weights permit 

reasonable efficiency, low bias. Profile robust against model 
failure.

� Pooling categories of V or smoothing over V reduces bias and 
variance.

� High price paid (bias/variance) in not using knowledge of the 
conditional distribution of x\v. Is this because of additional 
nuisance parameters? Adjust profile likelihood?

� Bayesian: Gibbs sampling?


