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Semiparametric Model and Estimation

@ : finite dimensional
77 . Infinite dimensional.
n The conditional mean model:
ECY | X) = u(X;6)
n The Likelihood function:
fle[ X]g(X), €=Y —u(X;6)

n The nuisance parameters N=(t, g):

{f(g|X): jgf(g|x)dg:o,xm><}




Estimation for the Semiparametric
Model

Goal: estimation of &

n Semiparametric efficient estimation (SEE):

finding a Jn consistent estimator achieving the

efficiency bound

n Heuristic approach: solve an (optimal) estimating
equation

n Optimal estimating function theory (Godambe, 1960)




Motivation: Optimal Estimation
and Semiparametric Efficiency

The conditional mean model:

n A Class of linear estimating functions

{Zi h(X;; )Y, — u(X;;0)],hH}

n Optimal member /quasi-scotre (McCullagh and Nelder, 1993)

b (X)e = HAX0)
Var(Y | X)

n h (X)& is the efficient score (Chamberlain, 1987)




Optimal Estimating Function
Theory of Godambe and Heyde

n A class of estimating functions indexed by H={/(Z; 6)}:
G ={G(h;Z,0):hH}

n Regular unbiased estimating function G(Z;0)

EG(Z;,0) =0

E
E

0G(Z;6)/06] isnonsingular;

G(Z;,0)G'(Z;6)] isnonsingular.



Criterion for Finding the Optimal
Member G*

n Optimality criterion:

Let £(G) = (EG)EGG'(EG)™. G is optimal
if £(G )-£(G) is nonpositive definite OGO G,
L@ and n UTI.

n Solve G=0 for g:

6-6 0 71.[0,(EG)EGG'(EG) ]

where G =9G /98




Optimality Criterion: Continued

n Theorem (Corollary to Theorem 2.1 in Heyde, 1997)

G 0G isaquasi-score estimating function
If and only If

EG =EGG" 0OGOG.

n Geometric Interpretation:

EG =EGG" « E[G(I,~G")]=0




Semiparametric Efficient Estimation
(BKRW, 1993)

n Notation:
|9* ©  efficient score function

* * _1 . . . *
[El, 1,17 semiparametric efficiency bound

e _ o B e § o o o
l, =[El 1,171, : efficient influence function

Data {Z.,i =1,..n} i.i.d

n Regular and asymptotically linear (RAL) estimator:

regular and 0=¢ +%Z¢(Zi .6,n) + Op(nm)

with E¢(Z;8,n) =0, varg(Z;6,n) < .




SEE: Continued

n Semiparametric efficient estimator:

0=0+=37,(2) +0,(n")

a var(l,) < var(g)

= The efficient estimator isthe most precise RAL.

= Sufficient to work with the class of RAL estimators
to find the efficient estimator.
= find 1, (I,")
—> construct efficient estimators




SEE and Optimal Estimation:
Connection (Chen 2002, Ph.D dissertation)

n A corollary to Theorem 3.3.1, BKRW

Let G ={G} bethe closed linear span of the influence
functionsfor all RAL estimators. Then |, is uniquely
identified by |, OG and

E[G(ls—1,)]=00GOG.

n Recall Godambe’s optimality criterion

EG =EGG" - E[G(,-G")]=0




Connection: Continued

B The efficient score/influence function is the Godambe’s
optimal member in the closed linear span of influence
functions for all RAL estimatots!

B Usetul to calculating the etficient score functions

for the missing data problem (Robins, Rotnitzky and Zhao, 1994;
RRZ)

m Maybe useful to obtain the efficient score function

for non-11d data (Welfelmayer 1996)




An Example

n The quasi-likelthood model:

ECY | X) = u(X;0); var(Y [ X) = gv(u).
@ and v are known.

n The Likelihood function:

f[&, [X]g(X) where &, = (Y — 1) [(gv)"*

n The nuisance parameters N=(, g):
{T(e | X): &.f(e, |x)de, =0,
e f (e, |x)de, =1, x0O X}




Example: Continued

n A class of linear estimating functions

(G,(h;6): G,(h;8) =Y h(X;O)Y, - u(X;;0)],h OH}

Optimal member: G, =" 44 v (1) [Y, - (X, 6)]

n A class of quadratic estimating functions

{Gy(h,h;6): G, =) h(X;:8)g +,(X;0)(&" - o))
Optimal member G, : involves E(£° | X) and E(£” | X).




An Example: Continued

[var(G,)]™ = [var(G, )] ™ .

is the complete class of influence fanctions

{G,} for all RAL estimators

Gz 1s the efficient score function

The same efficient score was obtained by Rotnitzky

and Robins (1995) using a different approach




Outline

n Semiparametric efficiency and Godambe’s

optimality: Connection

n Application: the auxiliary outcome problem with the
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MRC Cognitive Function and Aging
Study (Clayton ez al, JRSS(B), 1999)

n Goal: Estimate prevalence of dementia

n by sex and age (X = covariates)

n Outcome: dementia assessed by
n Geriatric mental state exam (Y) — gold standard

n Mini-mental state exam (S — auxiliary outcome

n Design: two phase sampling
n 10,000 main sample known (X,S

n 1,780 validation sample known (Y,X,§
n Data simulated by Clayton ez 4.




Study Design

No. of subjects  Sampling

Main Validation fraction
291 291 1.000

950 220 0.252

3,759 586 0.105
1,037 496 0.478

1,486 208 0.140
DA77 179 0.072
10,000 1,780 0.178




Notation

Y = true outcome

S = auxiliary (surrogate) outcome

X = covariates

R = sampling indicator (R=1—wvalidation)
Observed data

R=1 (S,X,Y)
R=0C: (S, X)

Z :(S,X,RY,R){

(Z,i=1..ni.id.



Conditional Mean Model

n  Conditional mean (parametric)
E(Y | X =x)=u(x;8), 60R"

nJoint distribution
p(y,s, x) =q(s|y,x) f (y-u(x;08))9(x)

“ n=(q, f,qg) (infinitedim.) "nuisance" parm

finite variance, j f(e)de =0




Validation Sampling: MAR

n Missing at random:

Pr(R=1|y,s,X) = Pr(R=1|s, x) = 71(s, X)

n Positive validation probability:

(s, X) =20 >0

n Parametric missingness model:

71(S, X) = M(S, X, ), a




Previous Work

n Semiparametric efficient estimators of 6

Robins, Rotnitzky, Zhao (1454, 1994)
Rotnitzky, Robins (Swnd J Statist, 1995)
Holcroft, Rotnitzky, Robins (7 Stat Plan In£1997)

n Inefficient estimators of 6
n Pepe, Reilly, Fleming (J Stat Plan 1n£1994)
n “Mean score” (Horwitz-Thompson) estimator
n Y. Chen (Biometrika, 2000)

n “Robust imputation” estimator




Rationale for More Work

“Simple” dertvation of SEE via connection to Godambe

optimality

Method may generalize to more complex problems

Explicit expression for efficient estimating equation

Usetul pedagogical example




Missing Data Problem ®rz, 1994)

n Space / of influence functions for RAL est

G(h; 2) :]—F; h(X)e - R;T” h(X)E(£|S, X)

n Godambe optimal quast score is G*=/*X)e*

¢ =Ry B2 evis X) - u(X:6)
J{ Il

h = a(X:8)Va (£ | X)

n Estimate E(Y| 5,X), Var(e*| X) and 7 from data




Semiparametric Efficiency Bound

n Efficiency bound is Var(G*) where

Var(G') = E{p(x;e)[Var(g 1 X) + A(X)]‘lpT(x;e)}

A(X):E(l_TﬂVar(£|S,X)|X]

n Perfect information: S=Y=A(X)=0
-Usual quast likelthood bound

n No information: gy |X = Validation only

VaG =E y(x;e)E-l(]—lT XjVar'1(£| X) " (X:6)

25




Summary and Conclusions

n SEE and optimal estimating equation theory

n Connection (Chen 2002, Dissertation)

n The Auxiliary Outcome Problem (Chen and Breslow,
Canadian J. Statistics):

n Efficient score has a simple closed form

n Extensions of Chen’s “robust imputation” method in

progress for continuous $ and X




