Missing Data in Family-Based Genetic **Association Studies**

Shelley B. Bull and Juan Pablo Lewinger University of Toronto

Genetic association – Study designs Background

Case-parent (Trio) design and data

Missing data mechanisms

Original transmission/disequilibrium test (TDT) Current Methods

FBAT (Family-based association test) methods

Some observations

A Likelihood-Ratio-Based Test of Association

Definition of the Test Statistic

Treatment of Missing Data

Evaluation and Conclusions

Genetic Association - Study Designs

"Outcome" is disease status = affected/unaffected "Exposure" is candidate gene/marker genotype/alleles

Unrelated case-control association

- sensitive to population stratification or admixture, i.e., confounding by ethnicity or population history
- arises when the sampled population consists of multiple subpopulations in which the disease prevalence and genotype frequencies differ among subpopulations

Family-based association

- less efficient than the unrelated case-control design
- immune to population stratification,
 by conditioning on parental genotypes
- issues in dealing with incompletely observed or missing data in families, specifically missing parental genotypes

Case-parent (Trio) Design / Data

Ascertain (sample) on the child's disease status (phenotype): Ω

Two informative parents:

Mother transmits allele 3 to affected child

Under H_0 : pr (transmit $3 \mid \Omega$) = pr (transmit $4 \mid \Omega$) = $\frac{1}{2}$

Under H_A : pr (transmit $3 \mid \Omega$) > pr (transmit $4 \mid \Omega$)

One uninformative parent:

One missing parent:

Missing Data Mechanisms

Issue: Conditioning event, i.e. the parental genotypes, is incompletely observed or unobserved

Missing at random:

- distribution of genotypes of the missing parents (conditionally on genotypes of offspring, available parent), is NOT different from parents with observed genotypes
- valid estimates of population genotype frequencies can be estimated from the sampled parents (given ascertainment)

Informative missingness:

- whether a parent is missing depends on his/her genotype at the locus of interest:
 - genotype is associated with early mortality from the disease of interest,
 - genotype is associated with a different disease leading to missingness,
 - propensity to be missing is correlated with genotype frequency in sub-populations within the sample.

Allen et al (2003) Kistner & Weinberg (2004) Chen (2004)

Original TDT for a Biallelic Marker

Not

Transmitted

Two heterozygous parents:

Transmitted

A a 0 0

0

2

One heterozygous parent:

Transmitted

4 а

Not Transmitted

A

a

a

1 0

Sum over all families:

b = # heterozygous parents transmit A

c = # heterozygous parents transmit a

Original TDT for a Biallelic Marker

Sum over all N families:

Test statistic is: $T = (b - c)^2 / (b + c) \sim \text{asymptotic } \chi^2$ (1 df)

 Analogous to a matched case-control pair design with allele as the exposure, leading to McNemar's test

More generally: using all 3 pseudo-sibs corresponds to a likelihood of the conditional logistic form, leading to a score test.

Properties:

- Valid type I error under arbitrary parental genotype distributions and population stratification
- Analysis that ignores families with missing parents retains validity even under "informative missingness"
- Test for linkage of a marker locus to a disease locus (θ = recombination distance)
 in the presence of association between marker and disease-gene alleles
 (δ is allelic association / linkage disequilibrium)
- Power depends on level of allelic association between marker and disease loci

FBAT (Family-based Association) Methods

General framework for constructing valid tests under general mechanisms of genotype missingness

Specification of test statistics:

$$T = \sum_{i,j} f(G_{i,j}) h(Y_{i,j})$$

Laird et al (2000)

 $h(Y_{ij})$ is a function of phenotype, eg. 1=affected, 0=unaffected $f(G_{ij})$ is defined by genotype, eg. # of 'A' alleles

Distribution of *T*:

Conditional on parental genotypes and observed traits

Under the null hypothesis of no linkage (H_0) ,

- offspring genotypes and all phenotypes are conditionally independent,
- the permutation distribution of offspring genotype values
 follows Mendel's law of segregation.
 Kaplan et al (1997)

For missing parents,

- cannot condition on unobserved parental genotypes,
- condition on the minimal sufficient statistics (under H_0) for the parental genotypes. Rabinowitz and Laird (2000)
- distribution now depends on the offspring genotypes.

Some Observations

- most model specifications focus on conditional log-linear models and genetic relative risk/association parameters, and do not explicitly consider conventional genetic linkage parameters such as allele frequencies, penetrance, and genetic distance
- relatively little explicit attention given to ideas of "missing at random" and "informative missingness"
- in some cases, some missing data treatments can lead to loss of validity in the presence of population stratification, eg. parental reconstruction methods
- variation in the extent to which genotype and phenotype information from the entire nuclear family is used eg. TDT does not use information on
 - -family structure
 - -affected status of parents
 - -unaffected offspring
 - -families with two homozygous parents
- recent interest in methods that will retrieve this information

A Likelihood-Ratio-Based Test of Association

Objective

Construct a test of association that:

- Retains immunity to population stratification
- Makes **efficient** use of all family information available.
- Can be applied with any pattern of missing genotypes.

Conditional framework of Rabinowitz and Laird

- Immunity to population stratification obtained by conditioning on parental genotypes and all phenotypes:
 - Under null, children's genotypes and all phenotypes are conditionally independent given the parental genotypes.
 - Conditional distribution completely characterized by Mendel's law of segregation.

$$PH_{\circ}(Gc|Gp,Y) = PH_{\circ}(Gc|Gp) = 2^{-k}(G)$$

Formally

- S=(G_p, Y)=(Parental genotypes and all phenotypes)
 constitute a *sufficient statistic* for the null
 hypothesis of no linkage.
- Given an appropriate test statistic, T=T(G,Y), compare t_{obs}=T(g_{obs}, y_{obs}) with the reference distribution

$$P_{H_o}(T \mid G_p, Y) = P_{H_o}(T \mid G_p)$$

Missing parental genotypes

- Cannot condition on parental genotypes.
- However, a sufficient statistic for the null hypothesis still exists.
- It also depends now on children's genotypes.

Example 1

Condition on: observed phenotypes, one parent missing, one parent AA, *at least* and one child AB, and *at least* one child AA.

```
      AB,AA,AA
      1/6

      AA,AB,AA
      1/6

      AA,AA,AB
      1/6

      AB,AB,AA
      1/6

      AB,AA,AB
      1/6

      AA,AB,AB
      1/6
```

Example 2

Condition on: observed phenotypes, both parents missing, exactly one child AB, and exactly 2 children AA.

$$AA,AA,AB \longrightarrow 1/3$$

Formally

- S=(phenotypes, observed parental genotypes, pattern of missingness, and a function of the children's genotypes) constitute a *sufficient statistic* for the null hypothesis of no linkage.
- Given an appropriate test statistic, T=T(X), compare t_{obs}=T(X_{obs}) with the reference distribution

$$P_{H_0}(T \mid S)$$

FBAT vs. TDT 300 families: 1/3 complete, 1/3 one parent missing and 1/3 both parents missing

Alternative Choice of Test Statistic

 Based on the standard parametric two point linkage model that incorporates allelic association parameters:

$$\theta$$
, f 0, f 1, f 2, p , q , ψ

 Most powerful conditional test against fixed alternative ω is based on the conditional likelihood ratio statistic:

- Good power is wanted for <u>all</u> alternatives defined by the parametric model.
- Estimate parameters

$$\eta = (f_0, f_1, f_2, p, q, \psi)$$

based on the likelihood

$$L(\eta) = \Pr(S \mid Y_A; \eta)$$

 Segregation analysis using traits <u>and</u> founder genotypes. Use likelihood ratio statistic:

$$exp(T) = \frac{Pr \,\widehat{\omega} \, (\mathbf{X} \, | \, \mathbf{S})}{Pr \,_{H_0} \, (\mathbf{X} \, | \, \mathbf{S})}$$
 where

$$\omega = (\theta = 0, \hat{\eta})$$

 T can be computed if there are missing data assuming data are missing at random.

Performance

- Simulation study
 - Compare power of LR test to power of commonly used tests such as TDT and FBAT.
 - Compare power of LR test to maximum power attainable.

Simulation Design

- Range of scenarios with prevalence ≈1%
 - Common dominant disease
 - Common recessive disease
 - Common additive disease
- Other parameters
 - Recombination fraction: θ =0.001, 0.01
 - Allelic association: ψ =10, 50 and 90%
 - marker allele frequency: q=0.1, 0.5
- Sample sizes: 150, 300, 600 families
- Ascertainment: Complete, single

Power of LR vs. FBAT

300 families. Complete data

Dominant model

Power of LR vs. FBAT

300 families: Both parents missing missing data

Robustness

- For a range of disease scenarios with a mixture of two populations:
 - marker allele frequencies:

Population 1: $q_1 = 0.1$

Population 2: $q_2 = 0.5$

Compare power between LR test and FBAT.

Power of LR vs. FBAT

300 families: complete data

Dominant model. Mixture of two populations

Conclusions

- Test more powerful than commonly used tests (TDT and FBAT) for <u>all</u> the scenarios considered under assumed model.
- Power always close to the theoretically maximum possible.
- Robust: power remains good under scenarios outside assumed model.

Future work

- Multiple alleles.
- More complex models.
- Quantitative, longitudinal and survival traits.
- Larger pedigrees.
- Multiple markers.

Acknowledgements

Joanna Szyda

Ying Liu

Fang Xie

Lucia Mirea

David Tritchler

Paul Corey

David Andrews

Lei Sun

NCE in Mathematics (MITACS)
Canadian Institutes of Health Research
NSERC

Example 1

Example 4

Condition on: observed phenotypes, both parents missing, and *exactly* 3 children AA.

$$AB,AA,AA \longrightarrow 1$$