Missing Data in Family-Based Genetic Association Studies

Shelley B. Bull and Juan Pablo Lewinger University of Toronto

Background Genetic association - Study designs Case-parent (Trio) design and data Missing data mechanisms

Current Methods Original transmission/disequilibrium test (TDT) FBAT (Family-based association test) methods Some observations

A Likelihood-Ratio-Based Test of Association
Definition of the Test Statistic
Treatment of Missing Data
Evaluation and Conclusions

Genetic Association - Study Designs

> "Outcome" is disease status = affected/unaffected "Exposure" is candidate gene/marker genotype/alleles

Unrelated case-control association

- sensitive to population stratification or admixture, i.e.. confounding by ethnicity or population history
- arises when the sampled population consists of multiple subpopulations in which the disease prevalence and genotype frequencies differ among subpopulations

Family-based association

- less efficient than the unrelated case-control design
- immune to population stratification,
by conditioning on parental genotypes
- issues in dealing with incompletely observed or
missing data in families, specifically missing parental genotypes

Case-parent (Trio) Design / Data

Ascertain (sample) on the child's disease status (phenotype): Ω
Two informative parents:
Mother transmits allele 3 to affected child
Under H_{0} : pr (transmit $\left.3 \mid \Omega\right)=\operatorname{pr}($ transmit $4 \mid \Omega)=1 / 2$
Under H_{A} : pr (transmit $3 \mid \Omega$) > pr (transmit $4 \mid \Omega$)

One uninformative parent:
One missing parent:

Both parents missing:

13

13

13
22

13

Missing Data Mechanisms

Issue: Conditioning event, i.e. the parental genotypes, is incompletely observed or unobserved

Missing at random:

- distribution of genotypes of the missing parents (conditionally on genotypes of offspring, available parent), is NOT different from parents with observed genotypes
- valid estimates of population genotype frequencies can be estimated from the sampled parents (given ascertainment)

Informative missingness:

- whether a parent is missing depends on his/her genotype at the locus of interest:
- genotype is associated with early mortality from the disease of interest,
- genotype is associated with a different disease leading to missingness,
- propensity to be missing is correlated with genotype frequency
in sub-populations within the sample.

Original TDT for a Biallelic Marker

Two heterozygous parents:

One heterozygous parent:

Not Transmitted	A	0
	a	2

Transmitted
A a

Sum over all families:
$b=\#$ heterozygous parents transmit A $c=\#$ heterozygous parents transmit a

Original TDT for a Biallelic Marker

Sum over all N families:
Test statistic is: $\mathrm{T}=(b-c)^{2} /(b+c) \sim \operatorname{asymptotic} X^{2}(1 \mathrm{df})$

- Analogous to a matched case-control pair design
with allele as the exposure, leading to McNemar's test
More generally: using all 3 pseudo-sibs corresponds to
a likelihood of the conditional logistic form, leading to a score test.
Properties:
- Valid type I error under arbitrary parental genotype distributions and population stratification
- Analysis that ignores families with missing parents retains validity even under "informative missingness"
- Test for linkage of a marker locus to a disease locus ($\theta=$ recombination distance) in the presence of association between marker and disease-gene alleles (δ is allelic association / linkage disequilibrium)
- Power depends on level of allelic association between marker and disease loci

FBAT (Family-based Association) Methods

General framework for constructing valid tests under general mechanisms of genotype missingness
Specification of test statistics:

$$
T=\sum_{i, j} f\left(G_{i, j}\right) h\left(Y_{i, j}\right)
$$

Laird et al (2000)
$h\left(Y_{i j}\right)$ is a function of phenotype, eg. $1=$ affected, $0=$ unaffected $f\left(G_{i j}\right)$ is defined by genotype, eg. \# of ' A ' alleles
Distribution of T :
Conditional on parental genotypes and observed traits
Under the null hypothesis of no linkage $\left(\mathrm{H}_{0}\right)$,

- offspring genotypes and all phenotypes are conditionally independent,
- the permutation distribution of offspring genotype values follows Mendel's law of segregation.

Kaplan et al (1997)
For missing parents,

- cannot condition on unobserved parental genotypes,
- condition on the minimal sufficient statistics (under H_{0})
for the parental genotypes.
Rabinowitz and Laird (2000)
- distribution now depends on the offspring genotypes.

Some Observations

- most model specifications focus on conditional log-linear models and genetic relative risk/association parameters, and do not explicitly consider conventional genetic linkage parameters such as allele frequencies, penetrance, and genetic distance
- relatively little explicit attention given to ideas of "missing at random" and "informative missingness"
- in some cases, some missing data treatments can lead to loss of validity in the presence of population stratification, eg. parental reconstruction methods
- variation in the extent to which genotype and phenotype information from the entire nuclear family is used eg. TDT does not use information on
-family structure
-affected status of parents
-unaffected offspring -families with two homozygous parents
- recent interest in methods that will retrieve this information

A Likelihood-Ratio-Based Test of Association

Objective

Construct a test of association that:

- Retains immunity to population stratification
- Makes efficient use of all family information available.
- Can be applied with any pattern of missing genotypes.

Conditional framework of Rabinowitz and

 Laird- Immunity to population stratification obtained by conditioning on parental genotypes and all phenotypes:
- Under null, children's genotypes and all phenotypes are conditionally independent given the parental genotypes.
- Conditional distribution completely characterized by Mendel's law of segregation.

$$
P_{H_{o}}\left(G_{c} \mid G p, Y\right)=P_{H_{o}}\left(G_{c} \mid G_{p}\right)=2^{-k(G)}
$$

Formally

- $\mathrm{S}=\left(\mathrm{G}_{\mathrm{p}}, \mathrm{Y}\right)=($ Parental genotypes and all phenotypes) constitute a sufficient statistic for the null hypothesis of no linkage.
- Given an appropriate test statistic, $\mathrm{T}=\mathrm{T}(\mathrm{G}, \mathrm{Y})$, compare $\mathrm{t}_{\text {obs }}=\mathrm{T}\left(\mathrm{g}_{\text {obs }}, \mathrm{y}_{\text {obs }}\right)$ with the reference distribution

$$
P_{H_{0}}\left(T \mid G_{p}, Y\right)=P_{H_{0}}\left(T \mid G_{p}\right)
$$

Missing parental genotypes

- Cannot condition on parental genotypes.
- However, a sufficient statistic for the null hypothesis still exists.
- It also depends now on children's genotypes.

Example 1

Condition on: observed phenotypes, one parent missing, one parent AA, at least and one child AB, and at least one child AA.

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AA}, \mathrm{AA} \longrightarrow 1 / 6 \\
& \mathrm{AA}, \mathrm{AB}, \mathrm{AA} \longrightarrow \\
& \mathrm{AA}, \mathrm{AA}, \mathrm{AB} \longrightarrow \\
& \mathrm{AB}, \mathrm{AB}, \mathrm{AA} \longrightarrow \\
& 1 / 6 \\
& \mathrm{AB}, \mathrm{AA}, \mathrm{AB} \longrightarrow \\
& \mathrm{~A} \longrightarrow \mathrm{AB}, \mathrm{AB} \longrightarrow \\
& \hline
\end{aligned} 1 / 6
$$

Example 2

Condition on: observed phenotypes, both parents missing, exactly one child AB, and exactly 2 children AA.

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AA}, \mathrm{AA} \longrightarrow \begin{array}{l}
1 / 3 \\
\mathrm{AA}, \mathrm{AB}, \mathrm{AA} \longrightarrow \\
\mathrm{AA}, \mathrm{AA}, \mathrm{AB} \longrightarrow \\
\hline
\end{array} \mathrm{1} 3
\end{aligned}
$$

Formally

- $S=($ phenotypes,observed parental genotypes, pattern of missingness, and a function of the children's genotypes) constitute a sufficient statistic for the null hypothesis of no linkage.
- Given an appropriate test statistic, $\mathrm{T}=\mathrm{T}(\mathrm{X})$, compare $\mathrm{t}_{\text {obs }}=\mathrm{T}\left(\mathrm{X}_{\text {obs }}\right)$ with the reference distribution

$$
\mathrm{P}_{\mathrm{H}_{0}}(\mathrm{~T} \mid \mathrm{S})
$$

FBAT vs. TDT

300 families: $1 / 3$ complete, $1 / 3$ one parent missing and $1 / 3$ both parents missing Dominant model

Alternative Choice of Test Statistic

- Based on the standard parametric two point linkage model that incorporates allelic association parameters:

$$
\theta, f 0, f 1, f 2, p, q, \psi
$$

- Most powerful conditional test against fixed alternative ω is based on the conditional likelihood ratio statistic:

$$
\frac{\operatorname{Pr} \omega(\mathbf{X} \mid \mathbf{S})}{\operatorname{Pr} H_{0}(\mathbf{X} \mid \mathbf{S})}
$$

- Good power is wanted for all alternatives defined by the parametric model.
- Estimate parameters

$$
\eta=\left(f_{0}, f_{1}, f_{2}, p, q, \psi\right)
$$

based on the likelihood

$$
L(\eta)=\operatorname{Pr}\left(S \mid Y_{A} ; \eta\right)
$$

- Segregation analysis using traits and founder genotypes.
- Use likelihood ratio statistic:

$$
\exp (\mathrm{T})=\frac{\operatorname{Pr} \widehat{\omega}(\mathbf{X} \mid \mathbf{S})}{\operatorname{Pr} \mathrm{H}_{0}(\mathbf{X} \mid \mathbf{S})}
$$

where

$$
\omega=(\theta=0, \widehat{\eta})
$$

- T can be computed if there are missing data assuming data are missing at random.

Performance

- Simulation study
- Compare power of LR test to power of commonly used tests such as TDT and FBAT.
- Compare power of LR test to maximum power attainable.

Simulation Design

- Range of scenarios with prevalence $\approx 1 \%$
- Common dominant disease
- Common recessive disease
- Common additive disease
- Other parameters
- Recombination fraction: $\theta=0.001,0.01$
- Allelic association: $\psi=\mathbf{1 0}, 50$ and 90%
- marker allele frequency: $\mathbf{q}=0.1,0.5$
- Sample sizes: 150, 300, 600 families
- Ascertainment: Complete, single

Power of LR vs. FBAT

300 families. Complete data
Dominant model

Power of LR vs. FBAT

300 families: Both parents missing missing data
Dominant model

Robustness

- For a range of disease scenarios with a mixture of two populations:
- marker allele frequencies:

Population 1: $\mathbf{q}_{\mathbf{1}} \mathbf{= 0 . 1}$
Population 2: $\mathbf{q}_{\mathbf{2}} \mathbf{= 0 . 5}$

- Compare power between LR test and FBAT.

Power of LR vs. FBAT

300 families: complete data
Dominant model. Mixture of two populations

Conclusions

- Test more powerful than commonly used tests (TDT and FBAT) for all the scenarios considered under assumed model.
- Power always close to the theoretically maximum possible.
- Robust: power remains good under scenarios outside assumed model.

Future work

- Multiple alleles.
- More complex models.
- Quantitative, longitudinal and survival traits.
- Larger pedigrees.
- Multiple markers.

Acknowledgements

Joanna Szyda
Ying Liu
Fang Xie
Lucia Mirea

David Tritchler
Paul Corey
David Andrews
Lei Sun

NCE in Mathematics (MITACS)
Canadian Institutes of Health Research NSERC

Example 1

Example 4

Condition on: observed phenotypes, both parents missing, and exactly 3 children AA.

$$
\mathrm{AB}, \mathrm{AA}, \mathrm{AA} \longrightarrow 1
$$

