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Abstract

In this paper we describe how to construct a Dirac operator on the loop
space of a string manifold. The key step is to construct an inner product
on the cotangent bundle of the loop space. There is then a Hilbert bundle
which is the fibrewise completion of the cotangent bundle. This bundle is
used to construct the spin bundle so that the Clifford multiplication map
extends to the domain of a connection allowing one to define the Dirac
operator.

1 Introduction

In this paper we describe a way to construct a Dirac operator on the loop space
of a string manifold. The key to this construction is to shift the focus from the
tangent bundle of the loop space to the cotangent bundle.

To explain the relevance of this remark and to describe a road map for our
construction, we review the finite dimensional situation. Let M be a closed,
oriented, Riemannian, spin manifold of even dimension d. The structure group
of M thus reduces to SOd and lifts to Spind. A spin structure on M is a choice of
such lift. Let Q→M be a spin structure onM ; so Q is a principal Spind-bundle.
The Lie algebras of SOd and of Spind are the same so any SOd-connection on M
canonically lifts to a Spind-connection. In particular the Levi-Civita connection
on M lifts to a connection on Q called the spin connection.

The group Spind acts on Rd via the covering map Spind → SOd and the
tangent bundle of M can be described as the bundle TM = Q ×Spind

Rd. It
also has a unitary 2d/2 representation ∆ called the spin representation which
decomposes as the sum of two irreducible representations, ∆ = ∆+ ⊕ ∆−.
There is a Spind-equivariant bilinear map π : Rd × ∆ → ∆ with the property
that it interchanges the factors ∆+ and ∆−. This extends to a linear map
π : Cd ⊗∆+ → ∆−. This map is called Clifford multiplication.

Transferring this to M , we obtain bundles S± := Q×Spind
∆± together with

a fibrewise linear map π : TCM ⊗ S+ → S− which extends to a linear map
π : Γ(TCM ⊗ S+) → Γ(S−). The spin connection on Q defines a covariant dif-
ferential operator ∇ on S+. The Dirac operator, ∂/, is defined as the composition
of ∇ with π.
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In defining ∂/ we have used two identities from finite dimensional linear al-
gebra. The range of ∇ is Γ(L(TCM,S+)), the space of sections of the bun-
dle of fibrewise (complex) linear maps from TCM to S+; the domain of π is
Γ(TCM ⊗ S+). To compose ∇ with π we need to equate L(TCM,S+) with
TCM⊗S+. To do this, we observe first that for finite dimensional vector spaces,
L(V,W ) ∼= V ∗⊗W ; and second that the metric on M identifies TM with T ∗M
(and hence their complexifications). Thus ∂/ should be thought of as the map:

∂/ : Γ(S+) ∇−→ Γ(L(TCM,S+)) ∼= Γ(T ∗CM ⊗ S+) ∼= Γ(TCM ⊗ S+) π−→ Γ(S−).

In infinite dimensions neither of the identities L(V,W ) ∼= V ∗ ⊗ W nor
V ∼= V ∗ is in general valid. If one tries to replicate the argument in the case
of a loop space one finds that the range of the covariant differential operator,
Γ(L(TCLM,S+)), is very much larger than the domain of the Clifford multipli-
cation map, Γ(TCLM ⊗ S+). Even though Clifford multiplication extends to a
completion of the tensor product, there is still a difference.

A spin representation can be constructed for any vector space V with a
continuous inner product, 〈·, ·〉. It consists of a Hilbert space, H, either finite or
infinite dimensional depending on the dimension of V , and there is a continuous
map π : V → L(H). This can be considered as a separately continuous bilinear
map, V ×H→ H, which extends to a linear map with domain the tensor product
π : VC ⊗H→ H.

Therefore, suppose that X is a manifold such that the cotangent bundle can
be completed to a (finite or infinite dimensional) Hilbert bundle. Applying the
spin construction to the cotangent bundle rather than to the tangent bundle
produces bundles S+, S− with a fibrewise linear map T ∗CX ⊗ S+ → S−. In
the finite dimensional case, X = M , the identification of TM and T ∗M via the
metric leads to an identification of the spin bundles and thus we have only altered
matters cosmetically (or cosmetrically). In infinite dimensions, X = LM , the
domain of the new Clifford multiplication map is significantly larger than the
original. We shall show in proposition 2.2 that it extends to the projective
completion of the tensor product, T ∗CLM⊗̃S+, which is naturally isomorphic to
L(TCLM,S+).

Thus by taking as our starting point the cotangent bundle with an inner
product, we solve both issues and can construct a Dirac operator. It is the
composition:

∂/ : Γ(S+) ∇−→ Γ(L(TCLM,S+)) π−→ Γ(S−).

It transpires that the completion of the cotangent bundle is naturally isomor-
phic to the completion of the tangent bundle and thus the spin bundle defined
by the cotangent bundle is equivalent to that defined by the tangent bundle.
This proves useful in that the spin bundle associated to the tangent bundle has
a natural connection in terms of structure on the original manifold.

This paper is organised as follows: in section 2 we review the construction
of the spin representation in infinite dimensions. In section 3 we derive the
obstruction to a spin structure on a loop space and define a string structure. In
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section 4 we examine the finer structure of the tangent bundle of a loop space
and construct the inner product on the cotangent bundle. In section 5 we give
the details of the construction of the Dirac operator. Finally, in the appendix
we examine the set of inner products on the space of distributions. These results
are not directly used in the construction, but are a related interesting side issue.

2 The Spin Representation

In this section we shall review the essential details of the construction of the spin
representation in infinite dimensions, also referred to as the Fock representation.
This is gleaned mostly from [PR94] with the application to loop spaces coming
from [PS86].

Let V be an infinite dimensional real vector space with a continuous inner
product, (·, ·). Let J be a choice of unitary structure on V ; that is, J is an
orthogonal transformation on V such that J2 = −1. Let VJ denote V with this
complex structure and let 〈·, ·〉 be the hermitian inner product on VJ defined by
〈u, v〉 = (u, v) + i (u, Jv).

Let HJ be the Hilbert space completion of Λ•VJ , the exterior power of VJ ,
with respect to the inner product:

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vl〉 =

{
0 l 6= k

det(〈ui, vj〉) l = k.

We use the notation L(HJ) for L(HJ ,HJ), the Banach space of (complex) con-
tinuous linear maps from HJ to itself. Define operators c : V → L(HJ) and
a : V → L(HJ) by:

c(v)u1 ∧ · · · ∧ uk = v ∧ u1 ∧ · · · ∧ uk

a(v)u1 ∧ · · · ∧ uk =
k∑

j=1

(−1)j−1〈ui, v〉u1 ∧ · · · ∧ ûi ∧ · · · ∧ uk.

Let π : V → L(HJ) be the operator c+ a.
Proposition 2.1 The operator c is complex linear and a is conjugate linear,
regarding V as VJ , and they satisfy the canonical anti-commutation relations:

{c(u), a(v)} = 〈u, v〉
{c(u), c(v)} = {a(u), a(v)} = 0

where for operators X,Y , {X,Y } = XY + Y X.
Hence π is real linear and satisfies π(v)2 = (v, v) I.

Proposition 2.2 Suppose that V is a complete nuclear reflexive space. The
map π : V → L(HJ) defines a continuous linear map π : L(V ∗,HJ) → HJ .
This map satisfies: π(x)h = π(x ⊗ h) where x ⊗ h : V ∗ → HJ is the map
f → f(x)h.

3



Proof. Let H denote the Hilbert space completion of V with respect to the
inner product topology defined by (·, ·). From [PR94, ch 2.4], we know that
π : V → L(HJ) extends to an isometric inclusion π : H → L(HJ). The map
H × HJ → HJ , (x, ξ) → π(x)ξ, is therefore continuous. From [Sch71, ch III,
§6], it extends to a continuous linear map with domain the projective tensor
product H⊗̃HJ .

The inclusion V → H induces a continuous linear map V ⊗̃HJ → H⊗̃HJ .
From [Sch71, ch IV, §9.4], as V is a complete nuclear space then the space V ⊗̃HJ

is isomorphic to Le(V ∗τ ,HJ); where this denotes the space of linear maps from
V ∗ to HJ . The topology on V ∗ is the Mackay topology and the topology on the
space of maps is that of uniform convergence on equicontinuous sets.

From [Sch71, ch IV, §5] we deduce that as V is reflexive, the Mackay topol-
ogy on the dual agrees with the strong topology. Also as V is reflexive, it is
barrelled and so equicontinuous sets in V ∗ are the same as bounded sets. Hence
Le(V ∗τ ,HJ) = L(V ∗,HJ).

The implementation question is the following: let O(V ) be the orthogonal
group of V . For which g ∈ O(V ) is there some Ug ∈ U(HJ) such that π(gv) =
Ugπ(v)U−1

g ? It is answered by:
Theorem 2.3 ([PR94, ch 3]) For g ∈ O(V ) there is some Ug ∈ U(HJ)
such that π(gv) = Ugπ(v)U−1

g if and only if [g, J ] is a Hilbert-Schmidt operator.
Moreover, if Ug and U ′g both implement g then Ug = λU ′g for some λ ∈ S1.

An operator T : H1 → H2 between Hilbert spaces is said to be Hilbert-
Schmidt if for some, and hence every, orthogonal basis {ei} of H1 then (‖Tei‖)
is square summable. The subgroup of O(V ) consisting of g such that [g, J ] is
Hilbert-Schmidt is written OJ(V ) in [PR94].

The theory of spin representations is closely related to that of polarisations.
There are various equivalent definitions of a polarisation, we choose the one that
is closest to the theory of unitary structures. The theory of polarisations and the
relationship with loop groups is the subject of [PS86]. The following definitions
are equivalent to those from [PS86, ch 6] although we have used notation similar
to that of [PR94] for better comparison with the theory of unitary structures.
Definition 2.4 Let H be a complex Hilbert space. A polarising operator on H
is an operator J ∈ L(H) such that J2 + I is trace class and J ± iI are not finite
rank.

A polarisation on H is an equivalence class of polarising operators under the
relation J1 ∼ J2 if and only if J1 − J2 is Hilbert-Schmidt.

Let J be a polarisation on H. The restricted general linear group of H with
respect to J , GlJ (H), is defined as the subgroup of Gl(H) consisting of those
A for which [A, J ] is Hilbert-Schmidt for one, and hence all, J ∈ J .

In [PS86], the notation used is Glres(H). The notation GlJ (H) emphasises
the dependence on the polarisation J . The operator used in the above definition
is slightly different from the operator J used in [PS86, ch 6]. To get from the
one to the other, multiply by −i.
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Clearly a polarising operator J defines a polarisation by taking the equiva-
lence class of J . Thus a unitary structure J on a real Hilbert space H gives rise
to a polarisation on the complexificationHC by taking the equivalence class of J ,
extended to the complexification by linearity. With respect to this polarisation,
it is evident that OJ(H) = GlJ (HC) ∩O(H).

There are three equivalent definitions of a unitary structure given in [PR94,
ch 2.1]. Using these correspondences, a careful examination of [PS86, ch 12]
reveals that the standard unitary structure on L2(S1,R2n) is defined in the
following way: Let {ek} be the standard basis for R2n. Let J0 : R2n → R2n be
the complex structure J0e2k = e2k−1, J0e2k−1 = −e2k. The unitary structure
on L2(S1,R2n) is defined by the operator J which satisfies:

J(v cos kθ) = v sin kθ
J(v sin kθ) = −v cos kθ

J(v) = J0(v).

Here we identify R2n with the subspace of constant loops in L2(S1,R2n).
The standard polarisation operator J on L2(S1,Cm) satisfies the identity:

J(vzk) = −(−1)sign(k)ivzk.

Proposition 2.5 The standard polarisation on L2(S1,C2n) is that defined by
the standard unitary structure on L2(S1,R2n). If m is odd, the standard polar-
isation on L2(S1,Cm) does not contain a unitary structure for L2(S1,Rm).

Proof. To distinguish the operators, let JR denote the unitary structure on
L2(S1,R2n) and also its extension to L2(S1,C2n). Let JC be the polarising
operator on L2(S1,Cm). The first part of the proposition follows from the
observation that JR and JC agree on the subspace of L2(S1,C2n) consisting
of loops orthogonal to the constant loops. This has finite codimension and
so JC − JR is finite rank. Thus JR and JC define the same polarisation on
L2(S1,C2n).

Let m be odd. Let {ek} be the standard basis for Rm. Let J0 : Rm → Rm

be the map J0e2k = e2k−1, J0e2k−1 = −e2k, J0em = 0. Let JR be the map on
L2(S1,Rm) defined using J0 as for the even dimensional case. This restricts to
a unitary structure on the subspace 〈em〉⊥. As before, JR and JC agree on the
subspace of loops orthogonal to the constant loops and thus define the same
polarisation on L2(S1,Cm).

Let K be a unitary structure on L2(S1,Rm). The space L2(S1,Cm) decom-
poses orthogonally according to the eigenspaces of JR and of K. Corresponding
to JR we have L2(S1,Cm) = V+⊕V−⊕C as ±i-eigenspaces and the 0-eigenspace.
Corresponding to K we have L2(S1,Cm) = W+ ⊕W−. Let Σ denote the op-
eration of complex conjugation on L2(S1,Cm). Then ΣW± = W∓, ΣV± = V∓,
and ΣC = C.

The identity map decomposes as the matrix:[
a b c
d e f

]
: V+ ⊕ V− ⊕ C→W+ ⊕W−.
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Here a : V+ → W+ is the inclusion of V+ followed by the projection onto
W+, and similarly for the other entries. Since the identity map commutes with
complex conjugation, d = ΣbΣ, e = ΣaΣ, and f = ΣcΣ.

Now assume that JR −K is Hilbert-Schmidt.
The operator b : V− → W+ can be written as 1

4 (I − iK)(I + iJR)P where
P : V+ ⊕ V− ⊕ C → V+ ⊕ V− is the orthogonal projection. This expands to
1
4 (I +KJR + i(JR−K))P . As K2 = −I, I +KJR = K(JR−K) and therefore b
is Hilbert-Schmidt. Similarly, d is Hilbert-Schmidt. Since c and f have domain
C, they are finite rank. Thus the operator a + e differs from the identity by a
compact operator so is Fredholm of index zero.

Since a and e start from orthogonal subspaces and end in orthogonal sub-
spaces, the fact that a + e is Fredholm implies that both a and e are also
Fredholm. The identity e = ΣaΣ then implies that Index a = Index e. The
matrix form of a+ e is: [

a 0 0
0 e 0

]
from which it is evident that the index of a + e is Index a + Index e + 1. This
is incompatible with Index a = Index e and so we deduce that JR −K cannot
be Hilbert-Schmidt. Hence there is no unitary structure for L2(S1,Rm) in the
standard polarisation of L2(S1,Cm).

For the record, we note the following properties of the groups associated to
the standard polarisation on L2(S1,C2n) and the standard unitary structure on
L2(S1,R2n).
Lemma 2.6 Let H = L2(S1,R2n) and let J be the standard unitary struc-
ture on H. Let HC = L2(S1,C2n) be the complexification and J the standard
polarisation on HC.

1. OJ(H) = GlJ (HC) ∩O(H);

2. let UJ (HC) = GlJ (HC) ∩ U(HC), then UJ (HC) → GlJ (HC) is a defor-
mation retract;

3. let GlJ(H) = GlJ (HC)∩Gl(H), then OJ(H)→ GlJ(H) is a deformation
retract; and

4. UJ (HC) ' ΩU , OJ(H) ' ΩO.

In [PS86, ch 6], it is shown that the natural action of LU2n on HC defines
an inclusion LU2n → UJ (HC). Since LO2n = LU2n ∩ O(H) and LGl2n(R) =
LGl2n(C) ∩ Gl(H), it follows that the natural actions of LO2n and LGl2n(R)
on H define inclusions LO2n → OJ(H) and LGl2n(R)→ GlJ(H).

The action of OJ(H) on HJ is projective. That is, there is a central S1-
extension of OJ(H), usually written PinJ(H) (the identity component being
SpinJ(H)), which acts unitarily on HJ . This central extension is classified by a
generator of H2(OJ(H),Z), which is isomorphic to Z.

6



Examining LO2n, we see that it has four components. The identity compo-
nent is the semi-direct product SO2n×Ω Spin2n which has double cover LSpin2n.
The central extension of OJ(H) pulls back to a central S1-extension of LSpin2n

written L̃Spin2n. This is classified by a generator of H2(LSpin2n,Z), which is
also isomorphic to Z. Note also that the transgression map τ : H•(Spin2n,Z)→
H•−1(LSpin2n,Z) is an isomorphism from degree 3 to degree 2.

We observe that HJ decomposes as H+
J ⊕H−

J corresponding to the decompo-
sition of ΛHJ as ΛevHJ⊕ΛoddHJ . The identity component of PinJ(H), whence
also L̃Spin2n, preserves this decomposition.

Finally, the circle action on L2(S1,R2n) lies in OJ(H) and has a canonical
lift to PinJ(H). This defines a circle action on HJ . The circle action on LSpin2n

therefore lifts to L̃Spin2n and the action of L̃Spin2n on HJ is circle equivariant.

3 String Manifolds and Spin Connections

In this section we explain how a string structure on a manifold defines a connec-
tion on the spin bundle of the loop space. Let M be an oriented, Riemannian
manifold of even dimension d. Let P →M be the principal SOd-bundle deter-
mined by the metric and the orientation. Let ω : TP → sod be the Levi-Civita
connection on M .

The group Spind is the connected double cover of SOd, universal if d > 2.
A spin structure on M is a principal Spind-bundle Q → M such that Q is a
double covering of P and the following diagram commutes:

Spind×Q −−−−→ Qy y
SOd × P −−−−→ P.

The manifold M admits a spin structure if and only if w2(M) = 0; the
set of isomorphism classes of spin structures is in bijective correspondence with
H1(M ; Z2).

In order that the loop space, LM , admit a spin structure the structure
group of LM must lift from LSpind to L̃Spind. We would also like this to be
S1-equivariant. The LSpind-principal bundle on LM is LQ. Thus we are asking
for an S1-bundle, equivalently a line bundle, over LQ with certain properties.
The primary property is that on fibres it must pull-back to the fibration S1 →
L̃Spind → LSpind.

As explained in [Bry93, ch VI], line bundles on loop spaces are closely re-
lated to gerbes on the original manifold. In particular, the central extension
L̃Spind of LSpind corresponds to the gerbe of Spind classified by the generator
of H3(Spind; Z) (recall that as a simply connected, simple Lie group, there is
a canonical isomorphism of H3(Spind; Z) with Z and hence a canonical genera-
tor). Rather than asking for a line bundle over LQ we therefore ask for a gerbe
over Q. This has the considerable advantage that the line bundle defined by the
gerbe will be Diff+(S1)-equivariant.
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We have to answer the following question: what is the obstruction to con-
structing a gerbe on Q which on fibres pulls-back to the fundamental gerbe on
Spind? We can rephrase this question in cohomological terms where it becomes:
when can we find an element a ∈ H3(Q; Z) such that if i : Spind → Q is the
inclusion of a fibre then i∗a is the generator of H3(Spind; Z)?

To answer this we examine the Serre spectral sequence of the fibration
Spind → Q→M . The first part of the E2-term is:

3 H3(Spind; Z)
2 0 0 0
1 0 0 0 0
0 H0(M ; Z) H1(M ; Z) H2(M ; Z) H3(M ; Z) H4(M ; Z)

0 1 2 3 4

This contains all the possible contributions to H3(Q; Z). The only part
that might not persist to the E∞-term is H3(Spind; Z) in the (0, 3) position.
This persists until the E4-term where the differential is d4 : H3(Spind; Z) →
H4(M ; Z). Let λ ∈ H4(M ; Z) denote the image of the canonical generator of
H3(Spind; Z) under d4. If λ = 0 then H3(Q; Z) ∼= H3(M ; Z) ⊕ H3(Spind; Z)
and the inclusion of a fibre induces the projection H3(M ; Z)⊕H3(Spind; Z)→
H3(Spind; Z). If λ 6= 0 then H3(Q; Z) = H3(M ; Z) and the inclusion of a fibre
is the zero map on H3. The class λ is known to satisfy 2λ = p1(M) which has
led to it being written as p1(M)/2. This notation is somewhat misleading as λ
depends on the choice of spin structure on M .
Definition 3.1 A manifold M is a string manifold if it is an oriented, Rieman-
nian, spin manifold such that λ = 0 together with a choice of string structure.
That is, a choice of gerbe, G, over the spin structure Q→M which on fibres is
the fundamental gerbe on Spind.

Once we have a string structure, there is a natural notion of a string con-
nection.
Definition 3.2 A string connection on a string manifold with string manifold
with string structure G consists of the Levi-Civita connection on Q and a Spind-
equivariant connective structure on the gerbe G.
Theorem 3.3 A string connection on M defines a Diff+(S1)-equivariant spin
connection on LM .

Compare this result with that of [Man02].

Proof. The Levi-Civita connection on M is a map ω : TP → sod. As Spind →
SOd is a covering map, it is a local diffeomorphism and so spind = sod. Thus the
Levi-Civita connection lifts to a connection on Q via ω′ : TQ → TP

ω−→ sod =
spind. The loop of this is a Diff+(S1)-equivariant map Lω′ : TLQ → Lspind.
This is also a connection.

The gerbe with its connective structure defines a Diff+(S1)-equivariant S1-
bundle L̃Q → LQ with a connection α : T L̃Q → R. As the gerbe on M
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pulls back to the fundamental gerbe on fibres, so also L̃Q → LQ pulls back to
L̃Spind → LSpind on fibres. Also, the connection is LSpind-equivariant. Hence
Lω′ ⊕ α : T L̃Q→ Lspind ⊕ R is a connection on L̃Q.

4 The Finer Structure of the Tangent Bundle

In this section we examine the tangent bundle of the loop space of a manifold.
In [PS86] it is shown that the various loop groups of polynomial loops (LpolUn),
loops which extend to an annulus of radii r and r−1 (LrUn)1, analytic loops
(LωUn), and smooth loops (LUn) are homotopic and therefore, say, a principal
LUn-bundle should have an associated principal, say, LpolUn-bundle. Similarly,
for a vector bundle with fibre LCn and structure group LUn there should be a
subbundle with fibre LpolCn. In this section we shall give a construction of this
subbundle for the loop bundle LE → LM defined by looping a vector bundle
E →M .

This construction owes its inception to J. Morava, [Mor01]. That paper
was subsequently withdrawn as the main result was found to be stronger than
the construction allows, see for example [CS04]. The aim of [Mor01] was to
construct a finite dimensional subbundle of the tangent bundle of an almost
complex loop space. The aim here is weaker as we seek to construct an infinite
dimensional subbundle which is fibrewise dense. Comparing the result of this
construction with the work in [CS04] and [Sta] reveals that this is, in a loose
sense, the smallest subbundle of the tangent bundle that can always be defined.

Let M be a simply connected manifold, π : E →M a complex vector bundle
of finite dimension n. Choose an inner product, 〈·, ·〉, on E and let ∇ be a
covariant differential operator on E compatible with the inner product.

We shall find it useful to regard loops on M as periodic paths. That is, a
smooth loop in M is a smooth map γ : R→M such that γ(t+ 1) = γ(t) for all
t ∈ R. Similarly, a point in LγE is a smooth map α : R→ E with π ◦α = γ and
such that α(t+ 1) = α(t). Thus LγE is identified with the subspace of Γ(γ∗E)
of those sections X satisfying X(t + 1) = X(t), noting that for any section Y ,
Y (t+ 1) and Y (t) must at least be in the same fibre of E.

For any smooth path β : R → M , the covariant differential operator ∇
defines a covariant differential operator Dβ : Γ(β∗E) → Γ(β∗E). This has the
following properties:
Lemma 4.1 1. For v ∈ Eβ(0), there is a unique section Xv ∈ Γ(β∗E) such

that Xv(0) = v and DβXv = 0. The assignment v → Xv is linear.

2. For any X,Y ∈ Γ(β∗E),

d〈X,Y 〉
dt

= 〈DβX,Y 〉+ 〈X,DβY 〉.

3. The assignment β → Dβ is smooth in β.
1We shall find it notationally convenient not to specify which of r or r−1 is the inner or

outer radius. Thus LrUn and Lr−1Un refer to the same object.
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Lemma 4.2 Let γ : R→M be periodic. If X ∈ γ∗E satisfies X(t+ 1) = X(t)
for all t then (DγX)(t+ 1) = (DγX)(t) for all t. Hence Dγ defines a fibrewise
operator LE → LE. This operator is skew-adjoint.

Proof. As γ is periodic, the map t → t + 1 defines a shift map σ : Γ(γ∗E) →
Γ(γ∗E). As Dγ is defined from data on E, σDγ = Dγσ. Therefore if σX = X,
σDγX = DγX.

That Dγ is skew-adjoint follows from the formula for the inner product on
LγE together with property 2 above:

∫ 1

0

〈DγX,Y 〉+ 〈X,DγY 〉dt =
∫ 1

0

d〈X,Y 〉
dt

dt

= 〈X(1), Y (1)〉 − 〈X(0), Y (0)〉.

This is zero because X and Y are periodic.

With Dγ defined, we can state the main theorem of this section. Let
LpolCn ⊆ LCn denote the linear span of the vectors {vzk : v ∈ Cn, k ∈ Z}.
This is a dense subspace of LCn.
Theorem 4.3 Let LpolE ⊆ LE be the subset such that LpolE ∩ LγE is the
span of the eigenvectors of Dγ . Then LpolE is a vector bundle over LM with
fibre LpolCn and structure group LpolUn. The natural inclusion LpolE → LE has
fibrewise dense image and on fibres corresponds to the inclusion LpolCn → LCn.

Proof. Let γ : R→M be a periodic path, i.e. a point in LM . Let Et = Eγ(t) be
the fibre of γ∗E above t ∈ R. As γ is periodic, Et+1 = Et. The holonomy map
of γ is the map Hγ : E0 → E0 defined by v → Xv(1), where Xv is defined as in
lemma 4.1. Property 2 implies that this map is unitary. From the uniqueness
of the map v → Xv, we deduce that Xv(t+ 1) = XHγv(t).

Let u be an eigenvalue of Hγ with eigenvalue λ ∈ S1. Let k ∈ R be such
that e−ik = λ. Let Zu,k(t) = eitkXu(t) ∈ Γ(γ∗E). We have Zu,k(t + 1) =
eikeitkXHγu(t), whence as v → Xv is linear and Hγu = λu, Zu,k(t + 1) =
eikλeitkXu(t) and hence Zu,k ∈ LγE. Since DγXu = 0, DγZu,k = ikZu,k and
hence Zu,k is an eigenvalue of Dγ with eigenvalue ik.

Conversely, suppose that Z is an eigenvector of Dγ with eigenvalue λ. From
the equation:

d〈Z,Xu〉
dt

= 〈DγZ,Xu〉+ 〈Z,DγXu〉 = λ〈Z,Xu〉

we deduce that Z(t) = eλtXv(t) where v = Z(0). The periodicity of Z implies
that v = eλHγv and hence v is an eigenvector of Hγ with eigenvalue e−λ.

Let z : R→ C be the map z(t) = e2πit. It is simple to see that the action of
multiplication by z takes Zu,k to Zu,k+2π.

Let LpolEγ ⊆ LγE be the span of the eigenvectors of Dγ .
The operator Hγ is unitary, hence diagonalisable. The eigenvalues of Hγ

are a finite subset of the circle. A choice of point e−is, 2π > s ≥ 0, not in
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this subset defines a choice of numbers s > k1 > . . . > kl > s − 2π such that
{e−ik1 , . . . , e−ikl} are the distinct eigenvalues of Hγ . Let ψ : Cn → E0 be a
linear isomorphism.

Define the map Ψ : LpolCn → LpolEγ as follows: it is sufficient to define
Ψ(vzm) for v ∈ Cn and m ∈ Z. The vector ψ(v) ∈ E0 has a unique orthog-
onal decomposition ψ(v) = u1 + · · · + ul into eigenvectors of Hγ with distinct
eigenvalues. Define Ψ(vzm) = zmZu1,k1 + · · · + zmZul,kl

. This map is a linear
isomorphism.

To show that the spaces LpolEγ fit together to make a vector bundle over
LM , it is sufficient to note that the two choices defining the isomorphism Ψ can
be locally chosen in a smooth way: a local choice of trivialisation ψ : Cn → E0

can be chosen smoothly as E0 → LM is a vector bundle, and the choice of
point on the circle can also be chosen smoothly – in fact, because the set of
eigenvalues of Hγ is a finite set which varies smoothly with γ then there is a
neighbourhood of γ in which these eigenvalues do not meet a particular fixed
point on the circle.

The structure bundle of this vector bundle has a similar construction. Let
P → M be the principal Un-bundle associated to E. The structure bundle of
LE is LP which, as with LM , we think of as the space of periodic paths in P .

A point in LγP is a periodic smooth choice of frame for each Et. Thus if
α ∈ LγP , α(t) is a basis for Et. Let {k1, . . . , kl} and ψ : Cn → E0 be as above.
Define α(t) = (Ψ(e1)(t), . . . ,Ψ(en)(t)). The structure bundle, LpolP , of LpolE
has fibre at γ given by α · LpolUn.

Once we have found a subbundle with fibre LpolCn, it is a simple matter to
adapt this construction to “thicken” this bundle and produce subbundles with
fibre LrCn and with fibre LωCn. Abstractly, these can be defined by taking
LαE = LpolE ×LpolUn

LαCn. If E were the complexification of a real vector
bundle W then these constructions would respect the underlying real structure
of LαE and so define corresponding subbundles of LW .

Using duality, this construction produces completions of (LE)∗. Abstractly,
(LαE)∗ = LpolP ×LpolUn

(LαCn)∗. Therefore, one way by which we could find a
Hilbert completion of (LE)∗ would be to fix a Hilbert completion H of (LCn)∗

such that the action of LpolUn on (LCn)∗ extends to a smooth action on H.
Then define the completion of (LE)∗ to be LpolP ×LpolUn H. The disadvantage
of this approach is that the action of LpolUn on any completion of LCn is not
unitary so this construction does not give a natural inner product on the fibres.
One can be defined using a partition of unity, but there is a better approach.
Lemma 4.4 Let γ ∈ LM . Let cosDγ : LpolEγ → LpolEγ be the operator:

cosDγ :=
∑
k≥0

(−1)k

(2k)!
D2k

γ

This operator is a well-defined linear isomorphism. If Z is an eigenvector of Dγ

with eigenvalue λ then (cosDγ)Z = (cosλ)Z.
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Proof. The statement about the action of cosDγ on the eigenvectors of Dγ is
immediate from the definition. As the eigenvalues of Dγ are purely imaginary,
the eigenvalues of cosDγ are real, positive, and greater than or equal to 1. Hence
as LpolEγ is defined as the span of the eigenvalues of Dγ , cosDγ is a well-defined
linear bijection. The topology on LpolEγ is the inductive limit topology from
the family of finite dimensional subspaces defined by taking the span of a finite
family of eigenvalues of Dγ . Since cosDγ preserves this family, it preserves the
inductive topology and is thus a topological homeomorphism. Hence it is a
linear isomorphism.

Definition 4.5 Let L2
eE be the vector bundle over LM such that L2

eEγ is the
subspace of LE consisting of those paths X for which 〈(cosDγ)X, (cosDγ)X〉
is defined. Let 〈〈·, ·〉〉 be the inner product on L2

eE defined by 〈〈X,Y 〉〉 =
〈(cosDγ)X, (cosDγ)Y 〉.
Lemma 4.6 Let L2

eCn be the space of loops in Cn which extend over the an-
nulus of radii (e−1, e) and have square-integrable boundaries. Then L2

eE
∼=

LpolUn ×LpolUn
L2

eCn.

Proof. Let Ψ : LpolCn → LpolEγ be the inclusion of a fibre as constructed in
the proof of theorem 4.3. We need to show that the L2

e-inner product on LpolCn

is equivalent to the pull back of 〈〈·, ·〉〉 via Ψ. If we choose a unitary basis of E0

consisting of eigenvectors of the holonomy operator, we can express both LpolCn

(via ψ : Cn → E0) and LpolEγ as the orthogonal direct sum of n-subspaces each
isomorphic to LpolC. The map Ψ respects this decomposition.

The standard basis for LpolC is {zm : m ∈ Z}. This basis is orthogonal
for the L2

e-inner product and for the pull back of 〈〈·, ·〉〉, but orthonormal for
neither. The norm of zm with respect to each inner product is given by:

〈zm, zm〉e = e|m|, 〈〈zm, zm〉〉 = cosh(k +m)

for some fixed k ∈ (−2π, 2π). Since both the sequences (e|m|/ cosh(k + m))
and (cosh(k +m)/e|m|) are bounded, the identity map on LpolC extends to an
isomorphism between the Hilbert space completions.

Proposition 4.7 The inner product 〈〈·, ·〉〉 is equivariant under the circle ac-
tion. The map X → (cosDγ)X is an equivariant isometry L2

eE → L2E, the
standard Hilbert bundle completion of LE. The dual of L2

eE is a Hilbert bundle
completion of (LE)∗ with a fibrewise equivariant inner product.

Using the Riesz identification of a Hilbert space with its dual, we have the
following Escher-like diagram of inclusions:

L2
eE −−−−→ LEx y

(LE)∗ ←−−−− L2E

12



though, unlike Escher’s Ascending and Descending, traversing a loop in this
diagram does not leave one where one started. The triples ((LE)∗, L2

eE,LE)
and (LE,L2E, (LE)∗) are known as rigged spaces.

5 The Construction of the Dirac Operator

The construction of the Dirac operator now proceeds without hindrance. There
are two equivalent approaches, differing in whether one wishes to emphasise
the rôle of the tangent bundle or of the cotangent bundle. Let M be a finite
dimensional, simply connected, string manifold with a choice of string structure
and string connection. The loop space LM thus has a spin structure with spin
connection. The Levi-Civita connection on the tangent bundle of M defines the
finer structure on the tangent bundle of LM as in section 4.

To emphasise the rôle of the tangent bundle, we take the spin bundles as-
sociated to the tangent bundle with their spin connection. Proposition 2.2
assures us that the domain of the Clifford multiplication map π extends to
Γ(L(T ∗CLM,S+)). The inner product from section 4 defines a linear injection
b : T ∗CLM → TCLM (factoring through L2

eTM). The map A→ A ◦ b defines a
linear injection L(TCLM,S+)→ L(T ∗CLM,S+).
Definition 5.1 (Version 1) The Dirac operator on the loop space LM is the
operator ∂/ := π ◦ b ◦ ∇:

∂/ : Γ(S+) ∇−→ Γ(L(TCLM,S+)) b−→ Γ(L(T ∗CLM,S+)) π−→ Γ(S−).

To emphasise the rôle of the cotangent bundle, we use the isomorphism
L2

eTM → L2TM to pull-back the spin connection from L2TM to the dual of
L2

eTM . We then construct the spin bundles of LM directly from the dual of
L2

eTM . As this is the fibrewise completion of T ∗LM , the Clifford multiplication
map extends to L(TLM,S+).
Definition 5.2 (Version 2) The Dirac operator on the loop space LM is the
operator ∂/ := π ◦ ∇:

∂/ : Γ(S+) ∇−→ Γ(L(TCLM,S+)) π−→ Γ(S−).

The two constructions are equivalent in that the isomorphism of (the dual) of
L2

eTM with L2TM induces an isomorphism of spin bundles and an isomorphism
(by construction) of the connections. Thus the two definitions differ solely in
emphasis.

A Inner Products on the Space of Distributions

In this appendix we examine inner products on LRn∗. The goal is to classify the
inner products on LRn∗ which have the following properties: the inner product is
invariant under the circle action, the involution of reversing loops is orthogonal,
and the operations of multiplication by cos θ and sin θ are continuous.
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We shall actually work with S∗, the dual of the space of rapidly decreasing,
complex-valued, Z-indexed sequences. As a sequence space, this is particularly
simple to describe and therefore to work with. Taking Fourier coefficients defines
an isomorphism LC → S which allows us to transfer information from S∗ to
LC∗. Using the description of LCn as LC⊗ Cn, we can extend the description
to the dual of LCn, and thence to the dual of the underlying real space LRn.

As a preliminary, we shall show that there is no “natural” inner product
on LC∗. That is, if LC× = L(C×) denotes the space of never-zero smooth
loops in C then there is no inner product on LC∗ such that the group LC×
acts continuously with respect to the inner product topology. This is in stark
contrast to the situation for LC where LC× does act continuously with respect
to the standard inner product.
Theorem A.1 Let LcC be a class of loops in C with the following properties:

1. there are continuous inclusions C→ LcC→ L1,∞C, where C corresponds
to the constant loops and L1,∞C is the space of continuously differentiable
loops;

2. the class of loops is preserved under products; thus LcC× acts on LcC and
hence, via the adjoint map, on LcC∗;

3. LcC is reflexive;

4. LcC cannot be given the structure of a Hilbert space;

then for any inner product on LcC∗ there is some α ∈ LcC× which acts un-
boundedly on LcC∗ with respect to the inner product topology.

Proof. Let 〈·, ·〉 be a continuous inner product on LcC∗. Let H denote the
Hilbert space completion of LcC∗ with respect to 〈·, ·〉. The dual of the inclusion
LcC∗ is a map H∗ → LcC∗ = LcC.

Suppose that LcC× acts continuously on LcC∗ with respect to the inner
product topology. This implies that H∗ is preserved in LcC by LcC×. Suppose
that H∗ ∩ LcC× 6= ∅. Because LcC× is a group, this implies that LcC× ⊆ H∗.
The linear span of LcC× is LcC so H∗ = LcC. However, this implies that
H∗ → LcC is a continuous, linear bijection from a Hilbert space onto LcC
which contradicts the fourth assumption.

Thus we need to show that the other assumptions imply that H∗∩LcC× 6= ∅.
In other words, we need to show that there is an element in H∗ which is never
zero. To do this, we shall use the Banach-Steinhaus theorem as stated in [Sch71,
III, §4.6]. As LcC is reflexive, it is the dual of LcC∗. We shall write the
evaluation of α ∈ LcC on a ∈ LcC∗ as a(α) rather than α(a) to avoid confusion
with the notation α(λ) for the evaluation of α on λ ∈ S1.

From the corollary to [Sch71, IV, §2.3], as the inclusion LcC∗ → H is injec-
tive with weakly dense image, the map H∗ → LcC∗ is also injective with weakly
dense image. Thus there is a sequence (αn) in H∗ which converges weakly to
1. That is, for all a ∈ LcC∗, (a(αn)) converges in C to a(1). The space LcC∗ is
reflexive, hence barrelled, and so the Banach-Steinhaus theorem applies. This
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states that (αn) converges to 1 uniformly on each compact subset of LcC∗. We
shall find a particularly convenient compact subset of LcC∗.

The norm on L1,∞C is ‖γ‖1,∞ = sup{|γ(λ)| , |γ′(λ)|}. For λ ∈ S1, there is
an element eλ of L1,∞C which evaluates a loop at time λ. If γ ∈ L1,∞C with
‖γ‖1,∞ ≤ 1 then γ is Lipschitz with constant K ≤ 1. Therefore |eλ(γ)− eλ′(γ)|
is less than or equal to the smaller angle between λ and λ′. Hence λ→ eλ is a
continuous map from S1 to L1,∞C∗. Composing this with the dual of the map
LcC→ L1,∞C defines a continuous map S1 → LcC∗. Its image is thus compact
and therefore (αn)→ 1 uniformly on {eλ : λ ∈ S1}.

Hence there is some N such that for n ≥ N , |eλ(αn)− eλ(1)| < 1 for all
λ ∈ S1. Thus |αN (λ)− 1| < 1 so αN (λ) 6= 0 for all λ ∈ S1. Hence H∗ contains
an element which is never zero.

A.1 Inner Products on Distribution Space

In this section we investigate those inner products on S∗ which, under the
isomorphism S∗ ∼= LC∗, are invariant under the circle action and the involution
of reversing loops, and such that multiplication by z is continuous in the inner
product topology. Our goal is to prove the following theorem:
Theorem A.2 Let Cθ be the set of inner products on LR2n∗ which are:

1. S1-equivariant;

2. the involution which reverses loops is orthogonal,

3. multiplication by sin θ and cos θ are continuous.

Then Cθ is non-empty and convex.
To achieve this goal, we use the fact that as S∗ is a sequence space we have

a good presentation of elements of S∗ and of operators acting on S∗. We start
by transferring the above mentioned operators from LC∗ to S∗.
Definition A.3 Define the operators Rλ for λ ∈ S1, ι, and z on S to be the
operators corresponding under the Fourier isomorphism S ∼= LC to rotation by
λ, reversal of the circle, and multiplication by z, respectively. We shall use the
same notation for their adjoints which act on S∗.

The maps λ → Rλ ∈ L(S) and λ → Rλ ∈ L(S∗) define an action of the
circle on S and S∗ respectively. We shall refer to ι as the natural involution on
S and S∗.

For p ∈ Z, let ep ∈ S and ep ∈ S∗ both denote the sequence with a 1 in
the pth place and zero elsewhere. The sets {ep} and {ep} are topologically free
bases for S and S∗ respectively.
Lemma A.4 In terms of the bases {ep} and {ep}, the operators Rλ, ι, and z
are given by the formulæ:

Rλe
p = λpep ιep = e−p zep = ep+1

Rλep = λ−pep ιep = e−p zep = ep−1
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Definition A.5 Let C denote the cone of positive semi-definite, sesquilinear
forms on S∗ which are invariant under the action of the circle and under the
action of the natural involution. Let C+ ⊆ C denote the subcone consisting of
positive definite forms.

Let T denote the cone of positive, rapidly decreasing sequences (ap) such that
ap = a−p for all p ∈ Z. Let T + denote the subcone of strictly positive sequences.
Theorem A.6 The map (·, ·) → ((ep, ep)) defines a bijection of cones from C
to T such that C+ is carried onto T +.

Proof. As the set {ep : p ∈ Z} is a basis for S∗, any sesquilinear form, (·, ·),
on S∗ is completely determined by the Z×Z-indexed set of numbers {(ep, eq)}.
We shall refer to this as the double sequence associated to (·, ·).

Suppose that (·, ·) is a sesquilinear form on S∗ invariant under the action of
Rλ for some λ ∈ S1 not of finite order. Then for all p, q ∈ Z, (Rλep, Rλeq) =
(ep, eq). Using the formula from lemma A.4, the left-hand side of this equation
is λq−p (ep, eq). As λ is not of finite order, if p 6= q this implies that (ep, eq) = 0.
Thus the double sequence associated to (·, ·) is zero off the main diagonal.

Conversely, suppose that (·, ·) is a sesquilinear form on S∗ such that the
associated double sequence is zero off the main diagonal. For a = (ap) ∈ S∗, the
number (a, a) is given by the formula

∑
|ap| (ep, ep). Thus as Rλa = (λ−pap),

(Rλa,Rλa) = (a, a) for any λ ∈ S1. Hence (·, ·) is invariant under the circle
action.

If, in addition, the natural involution acts unitarily – that is, the sesquilinear
form is invariant under the action of the natural involution – then lemma A.4
shows that (ep, ep) = (e−p, e−p). The converse is immediate.

Let (·, ·) be a sesquilinear form which is invariant under the circle action and
under the natural involution. Let ap = (ep, ep) for p ∈ Z. The form (·, ·) is
continuous and therefore defines a conjugate linear map S∗ → S∗∗ = S. Under
this map, an element b ∈ S∗ is taken to the sequence ((ep, b)). Let 11 ∈ S∗ denote
the sequence consisting completely of 1s. Under the map S∗ → S defined by
the form, this element is taken to ((ep, 11)) = (ap). Hence the sequence (ap) is
rapidly decreasing and thus the map in the statement of the theorem is well-
defined.

Thus a sesquilinear form which is invariant under the circle action and under
the natural involution is completely determined by the sequence ((ep, ep)). It is
simple to see that the sequence is positive if and only if the sesquilinear form
is positive semi-definite, and that the sequence is strictly positive if and only if
the sesquilinear form is positive definite. Thus the sequence is an element of T
and is in T + if and only if the original sesquilinear form were positive definite.
Whence the map C → T is well-defined and injective. A simple check shows
that this is a map of cones.

To show that the map is surjective, and hence a bijection, let (ap) ∈ T . Let
b = (bp) and c = (cp) be elements of S∗. There exist integers m,n > 0 such that
(p−mbp) and (p−ncp) are bounded. As (ap) is rapidly decreasing, the sequence
(pn+m+2ap) is bounded and hence (pn+map) is summable. Hence (bpcpap) is a
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summable sequence and thus the formula:

(b, c)→
∑
p∈Z

bpcpap

is well-defined as a sesquilinear map S∗ × S∗ → C. It is evidently positive
semi-definite. To show continuity, it is sufficient to show that it is continuous
when restricted to each space {(xp) : (p−nxp) is bounded}. Continuity of this
restriction follows from the estimate:∣∣∣∣∣∣

∑
p∈Z

bpcpap

∣∣∣∣∣∣ ≤ sup{
∣∣p−nbp

∣∣} sup{
∣∣p−ncp

∣∣}∑
p∈Z

∣∣p2nap

∣∣ .
Thus the sequence (ap) defines a sesquilinear form on S∗. It is clear that

the associated double sequence for this form is zero off the main diagonal and
the main diagonal is (ap). Thus it is invariant under the circle action and the
natural involution and so is an element of C. It is the preimage of (ap) under
the map C → T showing that that map is a bijection.

Any continuous inner product on S∗ defines a Hilbert space completion,
but the map from inner products to Hilbert space completions is not injective.
Two inner products define the same Hilbert space completion if and only if the
identity map on S∗ extends to an isomorphism between the completions. This
condition can be stated elegantly in terms of the sequences in T + associated to
the given inner products:
Lemma A.7 Let (ap), (bp) ∈ T +. The Hilbert space completions defined by
the inner products associated to (ap) and (bp) are equivalent if and only if the
sequences (ap/bp) and (bp/ap) are bounded.

We now turn to the operator z and determine the answer to the following
question: for which inner products on S∗ is the operator z continuous with
respect to the inner product topology?
Proposition A.8 Let (ap) ∈ T +. Let (·, ·) be the associated inner product on
S∗. The operator z is continuous with respect to the inner product topology if
and only if the sequence of ratios (ap/ap+1) is bounded.

In this case, ‖z‖2 = sup{ap/ap+1}.
Notice that as ap = a−p, the sequence (ap/ap−1) is just (ap/ap+1) in reverse

order.

Proof. Let ‖·‖ be the norm defined by the inner product. Suppose that z is
continuous with respect to the inner product topology on S∗. In particular,
‖zep+1‖ ≤ ‖z‖ ‖ep+1‖ for all p. From lemma A.4, zep+1 = ep. Thus for p ∈ Z,
√
ap ≤ ‖z‖

√
ap+1. Hence the sequence (ap/ap+1) is bounded above by ‖z‖2.

Conversely, suppose that (ap/ap+1) is bounded above by, say, M . Let b =
(bp) ∈ S∗, then:

‖zb‖2 =
∑ ∣∣bp+1

∣∣ ap ≤
∑ ∣∣bp+1

∣∣Map+1 = M ‖b‖2 .
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Thus z is continuous with respect to ‖·‖ and so extends to a continuous linear
operator on H. Moreover, ‖z‖2 ≤M .

Combining the two relationships for ‖z‖ shows that ‖z‖2 = sup{ap/ap+1 :
p ∈ Z} when either side exists.

Corollary A.9 Let (ap) ∈ T be such that (ap/ap+1) is bounded. For each
q ∈ Z, the operator zq is continuous with respect to the inner product topology
and ‖zq‖2 = sup{ap/ap+q}.
Corollary A.10 Let Cz be the subset of C consisting of those inner products for
which the operation of multiplication by z is continuous, Tz the corresponding
subcone of T . Then Cz is a non-empty subcone of C+.

Proof. The set Tz consists of those sequences (ap) ∈ T + for which (ap/ap+1) is
bounded. This is non-empty as the sequence (2−|p|) lies in Tz.

Clearly, if (ap) ∈ Tz then for any t > 0, (tap) ∈ Tz. If (ap), (bp) ∈ Tz

then there exist M,N > 0 such that ap/ap+1 ≤ M and bp/bp+1 ≤ N for all
p. Equivalently, ap ≤ Map+1 and bp ≤ Nbp+1. Let R = max{M,N}, then
ap + bp ≤ R(ap+1 + bp+1) so ((ap + bp)/(ap+1 + bp+1)) is bounded, hence lies in
Tz.

Therefore Tz is a subcone of T + and so Cz is a subcone of C+.

These inner products transfer to LC∗ via the isomorphism LC∗ → S∗ but
we can find a formula which is more natural on LC.
Proposition A.11 Let (·, ·) ∈ C. Let (ap) ∈ T be the associated sequence.
Thinking of T as a subset of S, let γa ∈ LC be the image of (ap) under the
isomorphism S ∼= LC.

Under the isomorphism S∗ ∼= LC∗, the form (·, ·) is given by the formula
(b, c)→ b(c � γa) where c � γa ∈ LC is the map λ→ c(Rλ−1γa).

Proof. The map S1 × S1 → C defined by (λ, µ)→ γa(λ−1µ) is the composition
of smooth maps hence is smooth. Therefore by the exponential law for smooth
maps, [KM97, I.3], its adjoint, λ → Rλ−1γa, is a smooth map S1 → LC. The
element c ∈ LC∗ is a continuous linear map LC → C, hence is smooth, so the
map λ → c(Rλ−1γa) is a smooth map S1 → C. Thus the formula (b, c) →
b(c � γa) makes sense. It is also evident that the map c → c � γa is continuous
and so (b, c) → b(c � γa) is at least separately continuous and thus completely
determined by its effect on a basis.

Using the isomorphisms LC ∼= S and LC∗ ∼= S∗, we transfer these operators
to S and S∗. Under these isomorphisms, Rλ−1γa becomes the sequence (λ−pap)
and so eq(Rλ−1γa) = λ−qaq. Thus eq � γa is the sequence corresponding to the
function λ → λ−qaq which is aqe−q. Therefore, Σep(eq � γa) = e−p(aqe−q) =
aqδpq.

Hence the sesquilinear form on LC∗, (b, c) → b(c � γa), corresponds to the
original sesquilinear form on S∗, ((bp), (cp))→

∑
bpcpap.
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The inner products we consider on S∗ and LC∗ arise as inner products on
the underlying real spaces and therefore give a classification of inner products
on LR∗ which are invariant under the circle action and the natural involution,
and also of those for which the operations of multiplication by cos θ and by sin θ
are continuous.
Proposition A.12 The sesquilinear forms on S∗ and LC∗ considered above
are the complexifications of sesquilinear forms on the underlying real spaces of
both S∗ and LC∗.

Proof. For S∗, this is evident from the formula. For LC∗, it follows from the
invariance under ι together with the fact that ι intertwines the complex conjuga-
tion operators arising from S∗ and LC∗ (note that the isomorphism LC∗ → S∗
does not induce an isomorphism of real structures and thus the complex conju-
gation operators differ).

Together with corollary A.10, this proves theorem A.2.

A.2 Polarisations

In this section we examine how the theory of polarisations, and thus of unitary
structures, interacts with these inner products on the space of distributions.
We examine an inner product on LCn∗ determined by a sequence in Tz. To
pass from an inner product on LC∗ to one on LCn∗, we use the isomorphism
LCn∗ ∼= LC∗ ⊗ Cn together with the the standard inner product on Cn.
Lemma A.13 Let J be the operator on S∗ defined by Jep = −(−1)sign(p)iep.
Let (·, ·) ∈ C+ be an inner product on S∗ and let H be the corresponding Hilbert
space completion. Then the operator J defines a polarisation of H.

This extends in a natural way to a polarisation of the Hilbert completion of
LCn∗.

Proof. Let (ap) ∈ T + be the sequence corresponding to the inner product. For
b = (bp) ∈ S∗, it follows straight from the formula for J that (Jb, Jb) = (b, b)
and therefore J extends to a unitary operator on H. It satisfies J2 = −1 and
J ± iI are not finite rank. Therefore, it defines a polarisation on H.

To extend this to the Hilbert completion of LCn∗, we observe that this
completion is naturally isomorphic to H ⊗Cn. The polarising operator J on H
defines one on H ⊗ Cn by taking J ⊗ In.

Definition A.14 The polarisation J so defined on the completion of LCn∗ is
called the standard polarisation.
Proposition A.15 Let (ap) ∈ Tz. Let H be the associated Hilbert space com-
pletion of LCn∗. The polynomial loop group Lpol Gln(C) acts continuously on
H and preserves the polarisation. Thus there is some r such that Lr Gln(C)
acts continuously on H and preserves the polarisation.
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Proof. Let J be the polarising operator on H as defined in lemma A.13. Let
LJ (H) be the set of all bounded linear operators A on H such that [A, J ] is
Hilbert-Schmidt. It is clear that GlJ (H) = Gl(H) ∩ LJ (H). The norm of an
element A ∈ LJ (H) is the sum of the operator norm of of A and the Hilbert-
Schmidt norm of [A, J ].

There is an isometry Mn(C)→ L(H) given by A(a⊗ v) = a⊗Av, thinking
of H as the completion of LC∗⊗Cn. This maps continuously into LJ (H) since
A ∈Mn(C) commutes with J .

The operator z acts continuously on H and [J, z] is finite rank. It therefore
lies in LJ (H). Thus the image of LpolMn(C) in L(H) lies in LJ (H). Since this is
a Banach space, if r is the norm of z in LJ (H), the inclusion LrMn(C)→ LJ (H)
is well-defined and continuous.

The result then follows from the fact that the image of Lr Gln(C) lies in the
intersection of Gl(H) with LJ (H).

Proposition A.16 The inclusion Lr Gln(C) → GlJ (H) is homotopic to the
standard inclusion which factors through LGln(C).

Proof. Let T : H → L2(S1,Cn)∗ be the isometry which takes ep to √apep. This
identifies GlJ (H) with GlJ (L2(S1,Cn)∗) and so defines the map Lr Gln(C)→
GlJ (L2(S1,Cn)∗).

Let ζt : L2(S1,Cn)∗ → L2(S1,Cn)∗ be the map defined by ζt(ep) = a
t/2
p ep−1.

As ap is positive for all p, this is well-defined. The map ζ0 is the (adjoint of
the) map z. The map ζ1 is the map T−1zT . Therefore the two inclusions
of Lr Gln(Cn) are

∑
zqAq →

∑
ζq
0Aq and

∑
zqAq →

∑
ζq
1Aq. The required

homotopy is F (
∑
zqAq, t) =

∑
ζq
tAq.
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