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Abstract

The Fefferman program was launched 25 years

ago as a conjecture to express the analy-

sis of the Bergman and Szego kernels of a

strictly pseudoconvex domain in purely ge-

ometric terms. To date this conjecture is

only partially solved, but a more general aim

of the Fefferman is to relate the hypoelliptic

analysis of the Kohn-Rossi complex to the

CR geometric data of the manifold.

What I would like to explain in this talk is how

new perspectives in the latter direction can

be opened by making use of noncommutative

geometry, and in particular of the operator

theoretic framework for local index formula

of Connes-Moscovici.
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I. CR manifolds

Definition. A CR structure on an orientable

manifold M2n+1 is given by a rank n complex

subbundle T1,0 ⊂ TCM so that:

- T1,0 is integrable, i.e. [T1,0, T1,0] ⊂ T1,0.

- T1,0 ∩ T0,1 = {0}, where T0,1 = T1,0.

Equivalently, H = <(T1,0⊕T0,1) has the struc-

ture of a complex vector bundle of rank n.

Example. Boundary of domain D ⊂ Cn.
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• Horizontal ∂̄-complex (Kohn-Rossi):

The decomposition H⊗C = T1,0⊕T0,1 yields

a splitting ΛCH
∗ = ⊕Λp,q.

The operator ∂̄b : Γ(Λp,q) → Γ(Λp,q+1) is

∂̄b = Πp,q+1 ◦ d, Πp,q+1 : ΛT ∗M → Λp,q.

Since ∂̄2
b = 0 we get a complex.

The operator,

�b = ∂̄∗b ∂̄b + ∂̄b∂̄
∗
b ,

is the Kohn Laplacian.

Fact: �b is not elliptic, yet can be hypoellip-

tic for most, but not all, values of q (e.g. un-

der Kohn’s Y (q) condition).
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• Pseudohermitian Structure:

Let θ be a non-vanishing real 1-form annihi-

lating H. The Levi form on T1,0 is

Lθ(Z,W ) = −idθ(Z̄,W ).

Definition. 1) M is strictly pseudoconvex when

θ can be chosen in such way that Lθ is posi-

tive definite.

2) The choice of such a 1-form is called a

pseudohermitian structure on M .

Theorem (Tanaka, Webster). A pseudo-

hermitian structure determines a canonical

connection, the Tanaka-Webster connection,

which preserves the CR structure. This con-

nection is not torsion-free.
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Open Question (Fefferman’s program).

How much can we relate the hypoelliptic anal-

ysis of the ∂̄b-complex to the pseudohermitian

geometric data?
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II. Heisenberg Calculus

Independently invented by Beals-Greiner (‘84)

and Taylor (‘84), extending previous works by

Dynin, Folland-Stein, Boutet de Monvel, and

others.

• Heisenberg Manifolds:

Definition. A Heisenberg manifold is a man-

ifold M together with a distinguished hyper-

plane H ⊂ TM .

This definition includes CR manifolds, as well

as:

- Foliations (already dealt with by Connes-

Moscovici);

- Contact manifolds.

- Confoliations of Elyashberg and Thurston.
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• Tangent Groupoid of a Heisenberg Manifold:

Lemma. There exists a 2-form L : H ×H →
TM/H so that

Lm(X(m), Y (m)) = [X,Y ](m) mod Hm

for sections X, Y of H near m ∈M .

Definition.The tangent Lie group bundle GM

is obtained by endowing the bundle,

(TM/H)⊕H

with the grading and product such that

t.(X0 +X ′) = t2X0 + tX ′, t ∈ R,
(X0 +X ′).(Y0 + Y ′) =

X0 + Y0 +
1

2
L(X ′, Y ′) +X ′ + Y ′,

for sections X0, Y0 of TM/H and X ′, Y ′ of H.
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Proposition. We have:

rkLx = 2n⇐⇒ GxM ' H2n+1 × Rd−2n,

where H2n+1 is the (2n+1)-dimensional Heisen-

berg manifold.

This result justifies the terminology Heisen-

berg manifold.

Remark. This description of GxM coincides

with that in terms of nilpotent approximation

of vector fields at x, via the use of Heisen-

berg coordinates at x (RP ‘04).

Theorem (RP ‘04).M × M smoothly de-

forms to GM , i.e.

GHM := GMt(M×M×(0,∞)) 7→M×[0,∞),

is a differentiable groupoid.
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• Heisenberg Calculus:

The underlying idea is to construct a class

of pseudodifferential operators, the ΨHDO’s,

modeled on homogeneous left-invariant ΨDO’s

on the fibers of the tangent Lie group bundle

GM .

Locally the ΨHDO’s are ΨDO’s of type (1
2,

1
2),

but unlike the latter they:

- possess a full symbolic calculus;

- make sense globally on any Heisenberg man-

ifold.
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• Description of ΨHDO’s.

Consider a chart U with a with a frame X0, . . . , Xd
of TU so that X1, . . . , Xd are in H and set

σj = symb(1
iXj) and σ = (σ0, . . . , σd).

Definition. A Heisenberg symbol p(x, ξ) of

order m has an asymptotic expansion,

p ∼
∑
j≥0

pm−j, pm−j(x, λ.ξ) = λm−jpm−j(x, ξ),

where λ.ξ = (λ2ξ0, λξ1, . . . , λξd).

Definition. A ΨHDO of order m is locally of

the form,

P = p(x,−iX) +R, R smoothing,

p(x,−iX)u(x) = (2π)−(d+1)
∫
eix.ξp(x, σ(x, ξ))û(ξ)dξ,

where p is a Heisenberg symbol of order m.
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• Principal Symbol and Model Operators:

Definition. Sm(g∗M), m ∈ C, consists of smooth

functions on g∗M \0 which are homogeneous

of degree m.

Proposition (RP). The principal symbol of

P ∈ Ψm
H(M) makes sense globally as an ele-

ment pm ∈ Sm(g∗M).

Definition. The model operator of P at x ∈
M is the left-convolution operator on GxM

by pxm, pxm = pm(x, .).

Proposition (Beals-Greiner, Christ et al.).

There is a well defined product,

∗ : Sm1 × Sm2 → Sm1+m2
,

[(pm1 ∗ pm2)
x]∨ ∗x u = p̌xm1

∗x (p̌xm1
∗x u).
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Proposition (Beals-Greiner). For j = 1,2

let Pj ∈ Ψ
mj
H (M) have principal symbol pmj.

Then P1P2 has principal symbol pm1∗pm2 and

so (P1P2)
x = Px1P

x
2 ∀x ∈M .

Theorem (Beals-Greiner). Let P ∈ Ψm
H(M)

have principal symbol pm. TFAE:

(i) pm is invertible w.r.t. product ∗.
(ii) ∃Q ∈ Ψ−m

H (M) s.t. PQ = QP = 1 mod Ψ−∞.

Moreover, if (i) and (ii) hold then P is hypoel-

liptic with loss of m
2 -derivatives, i.e. we have

Sobolev estimates

‖u‖s+m/2 ≤ C(‖Pu‖s + ‖u‖s) ∀u ∈ C∞c (M).
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• Rockland Condition:

Let x ∈ M . Then to any π ∈ ĜxM we can

associated an (unbounded) operator πPx on

Hπ whose domain contains C∞(π).

Definition. P satisfies the Rockland condi-

tion at x if πPx is injective on C∞(π) for any

π ∈ ĜxM .

Theorem (Christ et al., RP). If the Levi

form has constant rank and the Rockland

condition is satisfied by P and P t at every

point, then pm is invertible.

Remark. Above result also applies to Ru-

min’s contact Laplacian.
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• Holomorphic Families of ΨHDO’s

Let Ω ⊂ C be open.

Definition. A family (qz)z∈Ω of symbols is

holomorphic when:

- The order mz is an analytic function of z;

- (qz) is a hol. family of smooth functions;

- The bounds of q ∼
∑
j≥0 qz,mz−j are locally

uniform in z.

Definition.A family (Qz) of ΨHDO’s is holo-

morphic if it is locally of the form

Qz = qz(x,−iX) +Rz,

where (qz) is a holomorphic family of symbols

and (Rz) is a holomorphic family of smooth-

ing operators.
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III. Functional Calculus (heat kernel approach)

• ΨHDO representation of the heat kernel:

Let P be a differential operator of even Heisen-

berg order v such that:

- P is positive, i.e. 〈Pu, u〉 ≥ 0;

- P has an invertible principal symbol.

Then e−tP is well defined for t ≥ 0, is smooth-

ing for t > 0.

Moreover, e−tP allows us to invert the heat

equation, for the operator

Q0 : C∞c (M × R) → D′(M × R),

Q0u(x, t) =
∫ ∞

0
e−sPu(x, t− s)ds,

satisfies (P + ∂t)Q0u = Q0(P + ∂t)u = u.
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In terms of distribution kernels the definition

of implies Q0 that it has the Volterra prop-

erty in the sense below.

Definition. Q : C∞c (M × R) → D′(M × R)

has the Volterra property if its distribution

kernel is of the form KQ(x, y, t − s) where

KQ(x, y, t) = 0 for t < 0.

Furthermore, letting kt(x, y) be the heat ker-

nel of P , we have

KQ0
(x, y, t) = kt(x, y) for t > 0.

This equality motivates building a pseudod-

ifferential calculus taking into account the

Volterra property in order to study the heat

kernel of P .
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• Volterra ΨHDO-calculus:

Developped by Beals-Greiner-Stanton (JDG

‘84) for deriving the heat kernel asymptotics

for the Kohn Laplacian.

Definition.A Volterra-Heisenberg symbol q(x, ξ, τ)

of order m has an asymptotic expansion,

q ∼
∑
j≥0

qm−j, qm−j(x, λ.ξ, λ
vτ) = λm−jqm−j(x, ξ, τ),

where qm−j(x, ξ, τ) has an analytic extension

to the region {=τ < 0} (Paley-Wiener condi-

tion).

Definition. A Volterra ΨHDO of order m on

M×R has the Volterra property and is locally

of the form,

Q = Q(x,−iX,Dt) +R, R smoothing,

where q is a Volterra-Heisenberg symbol of

order m.
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Theorem (Beals-Greiner-Stanton).Assume

that P+∂t has an invertible principal symbol.

1) (P+∂t)−1 is a Volterra-ΨHDOof order −v.
2) As t→ 0+ we have

kt(x, x) ∼ t−
d+2
v

∑
t
2j
v aj(P )(x),

aj(P )(x) = q̌−w−2j(x,0,1),

where the equality on the bottom shows how

to compute aj(P )(x) locally by means of the

symbol q−v−2j(x, ξ, τ) of degree −v − 2j of

(P + ∂t)−1.
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• Complex Powers:

For any s ∈ C we can define P s by standard

L2-functional calculus.Then:

P s = Γ(−s)−1
∫ ∞

0
t−s(1−Π0(P ))e−tP

dt

t
, <s < 0,

P s = P kP s−k, k integer > <s ≥ 0.

where Π0(P ) is the orthogonal projection onto

kerP .

Combining this with the ΨHDO-reprensentation

of the heat kernel of P we get:

Theorem (RP). Assume the principal sym-

bol of P + ∂t is invertible.Then (P s)s∈C is

a holomorphic family of ΨHDO’s such that

ordP s = vs.

Remark.This result is true for the Kohn Lapla-

cian under Y (q)-condition.
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Remark. This approach has also been used

by Melrose-Singer-Varghese (’04) in the con-

text of ΨDO’s on Azamaya bundles.

In fact, combining the previous theorem with

results of Folland-Stein we obtain:

Theorem (RP). Assume the Levi form has

constant rank and P satisfies the Rockland

condition at every point. Then the principal

symbol of P + ∂t is invertible, hence the pre-

vious results holds for P .

Remark.This holds for Rumin’s contact Lapla-

cian and allows us to fix a gap in the proof

of Julg-Kasparov of the Baum-Connes con-

jecture for SU(n,1).
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IV. Functional Calculus (resolvent approach)

• ΨHDO representation of the resolvent

Let P be a ΨHDO of integer order v > 0 with

an invertible principal symbol.

Definition. Θ(P ) is the cone which is the

complement in C\0 of the union set of spec-

tra of the model operators Px, x ∈M .

Lemma. Let L ⊂ Θ(P ) be a ray. Then ∃
an open cone Θ ⊃ L s.t. ∀R > 0, letting

Λ = Θ ∪ [D(0, R) \ 0], ∃q(λ) ∈ C∞⊗̂Hol−1(Λ)

such that:

(i) Modulo S−∞⊗̂Hol−∞(Λ),

(pm − λ) ∗ q(λ) = q(λ) ∗ (pm − λ) = 1.

(ii) q(λ) is almost homogeneous of degree −v,
i.e. for any t ∈ (0,1) we have

q(tvλ)(x, t.ξ)− t
−vq(λ)(x, ξ) ∈ S

−∞⊗̂Hol−∞(Λ).
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Definition. Ψ∗
H(M ; Λ) consists of operators

given by symbols with an asymptotic expan-

sion of parametric almost homogeneous sym-

bols.

Let Θ̌(P ) be the cone obtained from Θ(P )

by removing from it all the rays containing

an eigenvalue of P and set

Λ(P ) = Θ̆(P ) ∪ [D(0, R0) \ 0],

where RP = dist(0,SpP \ 0).

Theorem. 1) Θ̆(P ) is an open cone.

2) Any closed cone Θ ⊂ Θ(P ) contains at

most finitely many eigenvalues of P .

3) The resolvent (P−λ)−1 is in ΨH(M ; Λ(P )).
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Examples:

1) Selfdajoint case:

Θ(P ) ⊃ C \ R.

2) Selfadjoint sublaplacian and sum of squares

∆ = −(X2
1 + . . .+X2

r ):

Θ(P ) = C \ [0,∞).

Hence any selfadjoint sublaplacian is bounded

from below.

3) Real sublaplacian (e.g. ∆ = −(X2
1 + . . .+

X2
r ) +X0): ∃δ(∆) ∈ (0, π2) such that

θ(∆) ⊃ {
π

2
− δ(∆) ≤ argλ ≤

3π

2
+ δ(∆)},

Moreover δ(∆) > 0 when the Levi form is

never zero.
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• Complex Powers:

Let Lθ = {argλ = θ} be a ray contained in

Λ(P ) and define

P sθ =
1

2iπ

∫
Γθ
λs(P − λ)−1dλ, for <s < 0,

P sθ = P kP s−kθ , k integer > <s ≥ 0.

Proposition. 1) (P sθ )s∈C is a holomorphic fam-

ily of ΨHDO’s such that ordP sθ = ms.

2) We have

P
s1+s2
θ = P

s1
θ P

s2
θ , P0

θ = (1−Π0(P )),

P−kθ = P−k, k = 1,2, . . . ,

where P−k denotes the partial inverse of P k

and Π0(P ) is the projection onto E0(P ) =

∪j≥1 kerP j and along E0(P
∗)⊥ (note this is

also a smoothing operator).
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V. Noncommutative Residue Trace

Let (Md+1, H) be a compact Heisenberg man-

ifold.

• Logarithmic Singularity

Proposition. Let P ∈ Ψm
H(M), m ∈ Z.

1) Near the diagonal the kernel kP (x, y) of

P has a behavior of the form

kP (x, y) =
−1∑

j=−(m+d+2)

aj(x, ψx(y))

− cP (x) log ‖ψx(y)‖+ O(1),

where aj(x, λ.z) = λjaj(x, z).

2) The coefficient cP (x) makes sense globally

as a density on M .
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• Analytic Extension of the Trace:

If ordP < −(d + 2) then P is traceable and

we have

TrP =
∫
M
kP (x, x).

Theorem. 1) The map P → kP (x, x) has a

unique analytic continuation P → tP (x) to

Ψ
C\Z
H (M).

2) If (Pz)z∈C is a holomorphic jauge for P ∈
ΨZ
H(M) then tPz(x) has at most a simple pole

singularity near z = 0 such that

resz=0 tPz(x) = −cP (x).
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Consider the functionals

TRP =
∫
M
tP (x) and ResP =

∫
M
cP (x),

defined on Ψ
C\Z
H (M) and ΨZ

H(M) respectively.

Theorem. 1) The functional TR is the unique

analytic continuation of P → TrP to Ψ
C\Z
H (M).

2) We have TR[P1, P2] = 0 whenever ordP1+

ordP2 6∈ Z.

3) If (Pz)z∈C is a holomorphic jauge for P ∈
ΨZ
H(M) then TRPz has at most a simple pole

singularity near z = 0 such that

resz=0 TRPz = −ResP.
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• Noncommutative residue

Definition. The functional Res is the non-

commutative residue for ΨHDO’s.

Proposition. 1) Res is a local functional, i.e. is

given by integration of a density.

2) Res is trace, i.e. Res[P1, P2] = 0.

3) We have

ordQ.ResP = resz=0 TRPQ−zθ

for any positive order ΨHDO Q with principal

cut Lθ.

Theorem. If M is connected then Res is the

unique trace on ΨZ
H(M) up to constant mul-

tiple.
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VI. NCG and area of a CR manifold

• Quantized Calculus (Connes)

Let H be a Hilbert space. Then the following

equivalences hold.

Classical Infinitesimal Quantized Calculus
Complex Variable Operator on H

Real Variable Selfadjoint Operator
Infinitesimal Variable Compact Operator
Infinites. of order α Compact Operator s.t.

µk(T ) = O(k−α)
Integral

∫
f(x)dx Dixmier Trace −

∫
T

where µk(T ) = (k+1)’th eigenvalue of |T | =√
T ∗T .
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Let (M,H) be a compact Heisenberg mani-

fold.

Theorem (RP). Let P be a ΨHDO on M of

negative order −m.

1) P is an infinitesimal operator of order m
dimM+1.

2) If ordP = −(dimM + 1), then

−
∫
P =

1

dimM + 1
ResP.

This allows us to integrate any ΨHDO, even

though it is not an infinitesimal of order ≤ 1,

by letting

−
∫
P =

1

dimM + 1
ResP.
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• Area of a CR manifold:

Let (M2n+1, θ) be a pseudohermitian mani-

fold and let ∆b be its sublaplacian.

For any f ∈ C∞(M) we have

−
∫
f∆−(n+1)

b =
∫
M
f(x)(dθ)n ∧ θ.

Thus ds =
√

∆b recaptures the contact vol-

ume. This leads us to define

AreaθM = −
∫
ds2.

Theorem (RP). If dimM = 3 then

AreaθM = −
∫
ds2 =

∫
M
rM(x)dθ ∧ θ,

where rM denotes the Tanaka-Webster scalar

curvature of M .
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VII. Local Index Formulas

• The CM cocycle:

Let (A,H, D) be an (even) spectral triple,

i.e.:

- H is a Hilbert space together with a Z2-

grading γ : H+ ⊕H− → H− ⊕H+;

- A is an involutive unital algebra represented

in H and commuting with the Z2-grading γ;

- D is a selfadjoint unbounded operator on

H with compact resolvent s.t. γD = −Dγ
and [D, a] is bounded ∀a ∈ A.

The above data yields a well defined index

map,

indD : K0(A) −→ Z.
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We make the following assumptions:

- p-summability: We have

µk(D
−1) = O(k−1/p) as k → +∞.

- Smoothness: We have A ⊂ ∩k≥0 dom δk,

where δ is the derivation δ(T ) = [|D|, T ].

- Finite and simple dimension spectrum: Let

Ψ0
D(A) be the algebra generated by γ and

the δk(a)’s, a ∈ A. Then the zeta functions,

ζ(P ; z) = TrP |D|−z, P ∈ Ψ0
D(A),

have at most simple pole singularities and the

union set of their singularities is discrete.

This allows us to define a trace by letting

−
∫
P = Resz=0 TrP |D|−z, P ∈ Ψ0

D(A).
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Theorem (Connes-Moscovici ‘95). 1) Un-

der the above assumptions the following for-

mulas define an even cocycle ϕCM = (ϕ2k) in

the (b, B)-complex of the algebra A.

- For k = 0,

ϕ0(a
0) = resz=0 Tr a0|D|−z,

- For k 6= 0,

ϕ2k(a
0, . . . , a2k) =

∑
α
ck,α −

∫
γPk,α|D|−2(|α|+k),

Pk,α = a0[D, a1][α1] . . . [D, a2k][α2k],

where the ck,α’s are universal rational con-

stants and the symbol T [j] denotes the j’th

iterated commutator with D2.

2) We have:

indD[E] = 〈[ϕCM], E〉 ∀E ∈ K0(A).

where 〈., .〉 is the pairing of cyclic cohomology

with K-theory.
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Let (Md+1, H) be a compact Heisenberg man-

ifold and let D : Γ(S) → Γ(S) be a selfdajoint

first order ΨHDO such that:

- S = S+ ⊕ S− is Z2-graded with grading γ.

- Dγ = −Dγ and the principal symbol of D is

invertible.

- The principal symbol of D2 is contained in

the commutant of a subalgebra of SZ
H(M,S)

containing the principal symbols of [D, a][k]

and a[k], a ∈ C∞(M) (e.g. D2 sublaplacian

and D commutes with almost complex struc-

ture).
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Proposition. (C∞(M), L2(M,S), D) is a smooth

spectral triple which is (dimM+1)-summable

and has a simple dimension spectrum con-

tained in

{k ∈ Z; k ≤ dimM + 1}.

Moreover, the algebra Ψ0
D is contained in

Ψ0
H(M,S) and the associated residual trace

coincides with the noncommutative residue

for ΨHDO’s.

Let E be a Hermitian bundle over M equipped

with a unitary connection ∇E. Then

indD[E] = indD+
∇,E ,

where DE is the twisted operator given by the

composition

Γ(S ⊗ E) 1E⊗∇→ Γ(S ⊗ T ∗M ⊗ E) πD⊗1E→ Γ(S ⊗ E),
πD[(f0df1)⊗ σ] = f0[D, f1]σ.
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Theorem (RP). 1) There exists an even de

Rham current CD on M such that for any

Hermitian data (E,∇E) as above we have

indD+
∇,E = 〈CD,ChF E〉.

where ChF E = Tr e−F
E

is the total Chern

form of the curvature F E of ∇E.

2) The components C2k, k = 0,2, . . ., of CD
are given by the following formulas.

- For k = 0,

〈C0, f
0〉 = resz=0 Γ(z)Tr f0|D|−z.

- For k 6= 0,

〈C2k, f
0df1 ∧ . . . ∧ df2k〉 =

∑
α
ck,α −

∫
γPk,α|D|−2(|α|+k),

Pk,α = f0[D, f1][α1] . . . [D, f2k][α2k],

where −
∫

denotes the noncommutative residue

for ΨHDO’s.
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• Example:

Let (M3, θ) be a pseudohermitian manifold
and assume that T1,0 has a real structure,
i.e. an antilinear involution Z → Z.

Extending it to an involution on Λ∗,∗ we get
a Hodge operator,

∗α ∧ β = L∗θ(α, β)dθ, α, β ∈ Λp,q.

where L∗θ is the Levi metric on Λ∗,∗. We then
get a Z2-grading by letting,

γ = i(p+q)2+1 ∗ on Λp,q.

Define

Qb = (∂̄∗b ∂̄b − ∂̄b∂̄
∗
b )− γ(∂̄∗b ∂̄b − ∂̄b∂̄

∗
b )γ.

Theorem (RP). 1) On each Λp,q the opera-
tor Qb is, up to a sign factor, a sublaplacian
with an invertible principal symbol.

2) The previous assumptions are satisfied by
the operator Db such that

Qb = Db|Db|.
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