Local index theorem for transversally elliptic operators

X. Hu University of Toronto

September 25, 2004

xdhu@math.toronto.edu

 G-manifold and "differential forms" on them review of G-manifolds
 G-manifold and equivariant differential forms periodic cyclic (co)homology (of 𝒜)

Contents
G-space
G-manifold
equivariant theory
TEO
Examples
Index
"Space" A
K-homology
$(\mathscr{A},\mathscr{H},D)$
Wave Front
Oscillatory
Resolution
Conclusion

G-space • G-manifold and "differential forms" on them G-manifold review of *G*-manifolds equivariant theory G-manifold and equivariant differential forms TEO periodic cyclic (co)homology (of \mathscr{A}) Examples • Index of a transversally elliptic operator (TEO) Index "Space" A TEO relative to a compact Lie group action K-homology distributional index of a TEO $(\mathscr{A}, \mathscr{H}, D)$

Operator algebraic *K*-theory approach (\mathcal{H}, F)

Wave Front

Oscillatory Resolution

Conclusion

- G-manifold and "differential forms" on them review of G-manifolds
 G-manifold and equivariant differential forms periodic cyclic (co)homology (of 𝒜)
- Index of a transversally elliptic operator (TEO) TEO relative to a compact Lie group action distributional index of a TEO Operator algebraic *K*-theory approach (*H*, *F*)
- Spectral triples and Connes-Moscovici local index formula

 τ_k for $(\mathscr{A}, \mathscr{H}, D)$ Wave front set Oscillatory Integral Resolution of Singularities Renormalization

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

<

G-space basics: (*G*: always compact Lie group here) *G*-points: *G*/*H* (*H* < *G* closed subgroup)

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

▲

G-space basics: (G: always compact Lie group here) G-points: G/H (H < G closed subgroup)

(H): conjugate classes

Orbit type: (H) or (G/H), we choose the later

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** <

G-space basics: (G: always compact Lie group here)
G-points: G/H (H < G closed subgroup)

(H): conjugate classes

Orbit type: (H) or (G/H), we choose the later

• The only *G*-equivariant maps between *G*-points:

$$G/H \rightarrow G/K$$

are surjective ones for (H) < (K). This gives a partial order among types.

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

• "Good" *G*-spaces are *G*-*CW*-complexes: *G*-manifolds are good, due to Illman (1983). Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

∢ ►

 X^H : the subspace of X fixed points by H

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** ◀

 X^H : the subspace of X fixed points by H

• But when X is lower-dimensional G-CW complex, with types (H_i) , only bigger types than $(N(H_i))$ can be attached to it.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

 X^H : the subspace of X fixed points by H

• But when X is lower-dimensional *G*-*CW* complex, with types (H_i) , only bigger types than $(N(H_i))$ can be attached to it.

• So for a *G*-manifold *M*, a rough description of a general strategy to compute its (co)homology is

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

 X^H : the subspace of X fixed points by H

• But when X is lower-dimensional *G*-*CW* complex, with types (H_i) , only bigger types than $(N(H_i))$ can be attached to it.

• So for a G-manifold M, a rough description of a general strategy to compute its (co)homology is

1. Find M^H , for all (finite many) possible (H) and

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

<

 X^H : the subspace of X fixed points by H

• But when X is lower-dimensional *G*-*CW* complex, with types (H_i) , only bigger types than $(N(H_i))$ can be attached to it.

• So for a G-manifold M, a rough description of a general strategy to compute its (co)homology is

1. Find M^H , for all (finite many) possible (H) and

2. Find N(H) action on M^H ; the "attaching map" has bigger type (G/K) with K < N(H).

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

 X^H : the subspace of X fixed points by H

• But when X is lower-dimensional *G*-*CW* complex, with types (H_i) , only bigger types than $(N(H_i))$ can be attached to it.

• So for a G-manifold M, a rough description of a general strategy to compute its (co)homology is

1. Find M^H , for all (finite many) possible (H) and

2. Find N(H) action on M^H ; the "attaching map" has bigger type (G/K) with K < N(H).

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

• *G*-equivariant cohomology of *M* is defined as (Borel)

 $H^*_G(M) = H^*(M \times_G EG)$

where $EG \rightarrow BG$ is a classifying space for *G*-principal bundles.

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

∢

• *G*-equivariant cohomology of *M* is defined as (Borel)

 $H^*_G(M) = H^*(M \times_G EG)$

where $EG \rightarrow BG$ is a classifying space for *G*-principal bundles.

• H. Cartan introduced "the equivariant de Rham differential forms"

 $(\Omega^*(M)\otimes W(\mathfrak{g}))^G$

and equivariant exterior derivative, and showed that this gives the same cohomology up to \mathbb{Z}_2 -grading when the *G*-action is locally free.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

• *G*-equivariant cohomology of *M* is defined as (Borel)

 $H^*_G(M) = H^*(M \times_G EG)$

where $EG \rightarrow BG$ is a classifying space for *G*-principal bundles.

• H. Cartan introduced "the equivariant de Rham differential forms"

 $(\Omega^*(M)\otimes W(\mathfrak{g}))^G$

and equivariant exterior derivative, and showed that this gives the same cohomology up to \mathbb{Z}_2 -grading when the *G*-action is locally free.

• Block and Getzler "globalized" the Cartan's version and showed that its cohomology is essentially the same as periodic cyclic homology of the smooth crossed product algebra \mathscr{A} , to be defined later.

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

Contents

G-space

(for a compact Lie group G acting on a compact manifold M) An invariant (pseudo-)differential operator

 $P: \Gamma(E) \to \Gamma(F)$

$$T_G^*M = \{(x,\xi) \in T^*M : \langle \xi, X_M \rangle = 0 \ \forall X \in \mathfrak{g}\}$$

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

(for a compact Lie group *G* acting on a compact manifold *M*) An invariant (pseudo-)differential operator

 $P: \Gamma(E) \to \Gamma(F)$

$$T_G^*M = \{(x,\xi) \in T^*M : \langle \xi, X_M \rangle = 0 \ \forall X \in \mathfrak{g}\}$$

Transverse ellipticity (similar to a foliation): means principal symbol invertible on T_G^*M .

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

- Of course, elliptic operators.
- Any operator on *G*-points.

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

∢ ►

- Of course, elliptic operators.
- Any operator on *G*-points.
- Locally, pull-back of elliptic operators on the transverse direction: *P* on Δ^n to $\Delta^n \times (G/H)$.

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

- Of course, elliptic operators.
- Any operator on *G*-points.
- Locally, pull-back of elliptic operators on the transverse direction: *P* on Δ^n to $\Delta^n \times (G/H)$.
 - Wave operator with null directions not intersecting T_G^*M ;

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

- Of course, elliptic operators.
- Any operator on *G*-points.
- Locally, pull-back of elliptic operators on the transverse direction: P on Δ^n to $\Delta^n \times (G/H)$.
 - Wave operator with null directions not intersecting T_G^*M ;
- Pseudo-Riemannian Dirac operators with null directions not intersecting T_G^*M .

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" \mathscr{A}

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

(Atiyah 1974) Kernel of *P* and co-kernel of *P* are generally infinite dimensional.

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

< ►

Kernel of *P* and co-kernel of *P* are generally infinite dimensional.

For each irreducible representation r, the multiplicity of r in ker(P) (or and $ker(P^*)$) is finite.

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

Kernel of *P* and co-kernel of *P* are generally infinite dimensional.

For each irreducible representation *r*, the multiplicity of *r* in ker(P) (or and $ker(P^*)$) is finite.

We can make sense of

$$index(P) = char(ker(P)) - char(ker(P^*))$$

as a central distribution on G.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** •

Kernel of *P* and co-kernel of *P* are generally infinite dimensional.

For each irreducible representation r, the multiplicity of r in ker(P) (or and $ker(P^*)$) is finite.

We can make sense of

$$index(P) = char(ker(P)) - char(ker(P^*))$$

as a central distribution on G.

The traces make sense:

$$index(P)(f) = Trace(\rho(f)\pi_{kerP}) - Trace(\rho(f)\pi_{kerP^*}).$$

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathscr{A}, \mathscr{H}, D)$

Wave Front

Oscillatory

Resolution

Conclusion

Kernel of *P* and co-kernel of *P* are generally infinite dimensional.

For each irreducible representation r, the multiplicity of r in ker(P) (or and $ker(P^*)$) is finite.

We can make sense of

$$index(P) = char(ker(P)) - char(ker(P^*))$$

as a central distribution on G.

The traces make sense:

$$index(P)(f) = Trace(\rho(f)\pi_{kerP}) - Trace(\rho(f)\pi_{kerP^*}).$$

Atiyah also gave index theorem for torus action with finite isotropies (bigger orbit types). He used equivariant *K*-theory extensively.

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

<

Contents

G-space

The noncommutative "space": \mathscr{A} Elements of \mathscr{A} are in $C^{\infty}(M \times G)$,

The noncommutative "space": \mathscr{A} Elements of \mathscr{A} are in $C^{\infty}(M \times G)$, with product

$$(a*b)(x,g) = \int_G a(x,h)b(h^{-1}x,h^{-1}g)d\mu(h).$$

Let the group action be $\rho : G \times M \to M$. Also use ρ for the equivariant map $\rho : G \times E \to E$. The algebra \mathscr{A} acts on sections of a vector bundle *E* this way:

$$(\boldsymbol{\rho}(a)\cdot s)(x) = \int_G a(x,g)(\boldsymbol{\rho}(g)s)(g^{-1}x)dg.$$

The special case: \mathscr{H} , the (graded) L^2 sections $L^2(E) \oplus L^2(F)$,

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

Contents

G-space

•

Contents

Generalization of parametrix: $\exists Q : PQ - 1$ and QP - 1 are smoothing when composed with any $\rho(\phi), \phi \in \mathscr{A}$.

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

•

Contents

Generalization of parametrix: $\exists Q : PQ - 1$ and QP - 1 are smoothing when composed with any $\rho(\phi), \phi \in \mathscr{A}$.

Let $F = \begin{bmatrix} 0 & Q \\ P & 0 \end{bmatrix} (\mathcal{H}, F)$ is a pre-Fredholm module over \mathscr{A} .

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

•

Contents *G*-space

Generalization of parametrix: $\exists Q : PQ - 1$ and QP - 1 are smoothing when composed with any $\rho(\phi), \phi \in \mathscr{A}$.

Let $F = \begin{bmatrix} 0 & Q \\ P & 0 \end{bmatrix} (\mathcal{H}, F)$ is a pre-Fredholm module over \mathscr{A} . Finite summability:

And we can express the index (for large enough *n*):

$$index(P)(f) = Trace(\rho(f)(1-QP)^n) - Trace(\rho(f)(1-PQ)^n)$$

G-manifold equivariant theory TEO Examples

Index

"Space" A

K-homology

 $(\mathscr{A},\mathscr{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

Contents

Generalization of parametrix: $\exists Q : PQ - 1$ and QP - 1 are smoothing when composed with any $\rho(\phi), \phi \in \mathscr{A}$.

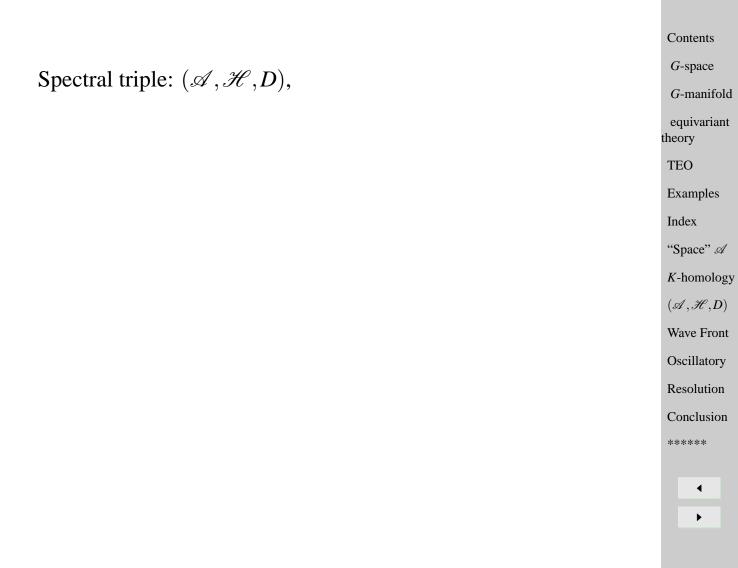
Let $F = \begin{bmatrix} 0 & Q \\ P & 0 \end{bmatrix} (\mathcal{H}, F)$ is a pre-Fredholm module over \mathscr{A} . Finite summability:

And we can express the index (for large enough *n*):

$$index(P)(f) = Trace(\rho(f)(1-QP)^n) - Trace(\rho(f)(1-PQ)^n)$$

Julg (1981) pointed out TEOs gives cycles in $KK(\mathscr{A}, \mathbb{C})$.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****



Spectral triple: $(\mathscr{A}, \mathscr{H}, D)$, \mathscr{A} as above; \mathscr{H} as above;

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** <

۲

Spectral triple: $(\mathscr{A}, \mathscr{H}, D)$, \mathscr{A} as above; \mathscr{H} as above; Let *D* is a *G*-invariant, 1st order, symmetric, transversally elliptic operator. Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

•

Spectral triple: $(\mathscr{A}, \mathscr{H}, D)$,

 \mathscr{A} as above; \mathscr{H} as above;

Let *D* is a *G*-invariant, 1st order, symmetric, transversally elliptic operator.

Then it is essentially self-adjoint on \mathscr{H} (Kordyukov 1991).

Contents G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** <

Spectral triple: $(\mathscr{A}, \mathscr{H}, D)$,

 \mathscr{A} as above; \mathscr{H} as above;

Let *D* is a *G*-invariant, 1st order, symmetric, transversally elliptic operator.

Then it is essentially self-adjoint on \mathscr{H} (Kordyukov 1991). If D^2 has scalar symbol, then we have a regular spectral triple; there are many examples.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

•

Contents

Spectral triple: $(\mathscr{A}, \mathscr{H}, D)$,

 \mathscr{A} as above; \mathscr{H} as above;

Let *D* is a *G*-invariant, 1st order, symmetric, transversally elliptic operator.

Then it is essentially self-adjoint on \mathscr{H} (Kordyukov 1991). If D^2 has scalar symbol, then we have a regular spectral triple; there are many examples.

We have seen the Connes-Moscovici local index formula involves traces of operators like

 $a^0(da^1)^{(k_1)}\dots(da^n)^{(k_n)}$

composed with powers of $|D|^{-1}$

For our purpose, we view those operators in the first line as elements in a much bigger algebra $\Psi(E) \rtimes G$ (See Appendix).

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

<

Contents

Wave front relation of
$$A \in \Psi(E) \rtimes G$$
,G-space $WF'(K_A) \in \{(\xi, g_*\xi) : \xi \in T^*_{G,x}M\};$ equivariant
theorycompared to $A \in \Psi(E)$,TEO $WF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ Index $MF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ 'Space'' of $MF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ Space'' of $MF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ 'Space'' of $MF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ Space'' of $MF'(K_A) \in \{(\xi, \xi) : \xi \in T^*_xM\}.$ 'Space'' of $M = FontSpace'' of $M$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Contents

Contents

Wave front relation of $A \in \Psi(E) \rtimes G$,

$$WF'(K_A) \in \{(\xi, g_*\xi) : \xi \in T^*_{G,x}M\};$$

compared to $A \in \Psi(E)$,

$$WF'(K_A) \in \{(\xi,\xi): \xi \in T_x^*M\}.$$

Using the composition and pushing rules of wave front sets. here is how a typical index formula looks like:

$$Trace(\rho(f)(1+P^*P+K_1)^{-s}) - Trace(\rho(f)(1+PP^*+K_2)^{-s}))$$

with

(A) with $1 + P^*P + K_1$, $1 + P^*P + K_2$ elliptic;

(B) and K_1 , K_2 are chosen so "small" as to be absorbed by $\rho(f)$ to smoothing operators.

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathcal{A}, \mathcal{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

For $A \in \Psi \rtimes G$ and *D* the part of the spectral triple: Following Grubb and Seeley (1995) we have the asymptotic behavior of resolvent along a ray

 $Trace(A(D^2-\lambda)^{-1}), |\lambda| \to \infty$

which gives equivalent information about poles of zeta functions

 $Trace(A|D|^{-s}).$

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** <

Contents

G-space

For $A \in \Psi \rtimes G$ and *D* the part of the spectral triple: Following Grubb and Seeley (1995) we have the asymptotic behavior of resolvent along a ray

 $Trace(A(D^2-\lambda)^{-1}), |\lambda| \to \infty$

which gives equivalent information about poles of zeta functions $Trace(A|D|^{-s}).$

Trace formula in $\Psi \rtimes G$ amounts to the asymptotic expansion (as $\mu \to \infty$) of oscillatory integrals locally of the form:

$$\mu^{-m} \int_{\mathbb{R}^{2n}} \int_{G} e^{i\mu(x-gx,\xi)} q(x,g,\xi) \, dgd\xi \, dx$$

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

Contents

G-space

▲
 ▲

(Malgrange) Let ϕ be a real valued nonzero analytic function on \mathbb{R}^N . For $u \in C_c^{\infty}(\mathbb{R}^N)$ (real or complex valued) a test function, let $I(\tau)$ be the oscillatory integral

$$I_{\phi,u}(\tau) = \int_{\mathbb{R}^N} e^{i\tau\phi(x)} u(x) dvol(x).$$

Then for $\tau \to \infty$

$$I(\tau) = \sum_{\alpha, p, q} c_{\alpha, p, q}(u) \tau^{\alpha - p} (\ln \tau)^{q},$$

where $\alpha \leq 0$ runs through a finite set of rational numbers, $p, q \in \mathbb{N}$ and $0 \leq q < n$. Moreover $c_{\alpha,p,q}$ are all distributions with support inside

$$S_{\phi} = \{x \in \mathbb{R}^N : d\phi(x) = 0\},\$$

and with finite orders not exceeding N.

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

Contents

G-space

Conclusions about $(\mathscr{A}, \mathscr{H}, D)$:

(1) It has dimension spectrum in \mathbb{Q} , starting from the highest transversal dimension of the *G*-*CW* complex.

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

•

Conclusions about $(\mathscr{A}, \mathscr{H}, D)$:

(1) It has dimension spectrum in \mathbb{Q} , starting from the highest transversal dimension of the *G*-*CW* complex.

(2) Recall the functionals defined in (CM95) (needed for local index formula)

$$\tau_k^{|D|}(A) = \operatorname{Res}_{z=0} z^k \operatorname{Trace}(A|D|^{-z}).$$

 $\tau_k^{|D|}$ vanishes for $k > \dim M + \dim G$.

Contents

G-space

G-manifold

equivariant theory

TEO

Examples

Index

"Space" A

K-homology

 $(\mathcal{A},\mathcal{H},D)$

Wave Front

Oscillatory

Resolution

Conclusion

Conclusions about $(\mathcal{A}, \mathcal{H}, D)$:

(1) It has dimension spectrum in \mathbb{Q} , starting from the highest transversal dimension of the *G*-*CW* complex.

(2) Recall the functionals defined in (CM95) (needed for local index formula)

 $\tau_k^{|D|}(A) = \operatorname{Res}_{z=0} z^k \operatorname{Trace}(A|D|^{-z}).$

 $\tau_k^{|D|}$ vanishes for $k > \dim M + \dim G$.

(3) $\tau_k^{|D|}$ are decided by the symbol near a conic neighborhood of T_G^*M in $T^*M \setminus \{0\}$.

theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion ***** •

Contents

G-space

G-manifold

equivariant

Conclusions about $(\mathcal{A}, \mathcal{H}, D)$:

(1) It has dimension spectrum in \mathbb{Q} , starting from the highest transversal dimension of the *G*-*CW* complex.

(2) Recall the functionals defined in (CM95) (needed for local index formula)

$$\tau_k^{|D|}(A) = \operatorname{Res}_{z=0} z^k \operatorname{Trace}(A|D|^{-z}).$$

 $\tau_k^{|D|}$ vanishes for $k > \dim M + \dim G$.

(3) $\tau_k^{|D|}$ are decided by the symbol near a conic neighborhood of T_G^*M in $T^*M \setminus \{0\}$.

(4) Therefore, renormalization, as in CM95, is not needed.

G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathcal{A}, \mathcal{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

•

Contents

G-space

Appendix 1:

The algebra $\Psi(E) \rtimes G$: an element is a continuous function : $G \rightarrow \Psi(E)$, with product

$$(P * Q)(g) = \int_G P(h) \cdot \left[((h^{-1})_* Q)(h^{-1}g) \right] d\mu(h),$$

There is an action on the sections $\Psi^k(E, E) \rtimes G$ on $\Gamma(E)$, defined as:

for
$$P = P(g)$$
 in $\Psi^{\infty}(E, E) \rtimes G$,
 $(Ps)(x) = \int_{G} P(g)\rho(g)(s(g^{-1}x))d\mu(g)$,

 $\Psi^{\infty}(E,E) \rtimes G$ is a $\Psi^{\infty}(E,E)$ bimodule (but be careful of the module map)

Operators in $\Psi^k(E, E) \rtimes G$ has order *k* compatible to $\Psi^{k'}(E, E)$ (the \mathbb{Z} -grading of Ψ)

theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

Contents

G-space

G-manifold

equivariant

Appendix 2:

Let $(\mathscr{A}, \mathscr{H}, D)$ be an even spectral triple defined by a first order transversally elliptic pseudo-differential operator D and with all the above conditions.

The Connes character $ch(\mathscr{A}, \mathscr{H}, D)$ in periodic cyclic cohomology is represented by the following even cocycle in the periodic cyclic cohomology:

$$\phi_{2m}(a_0, \dots, a_{2m}) = \sum_{k \in \mathbb{N}^{2m}, q \ge 0} c_{2m,k,q} \cdot \\ \tau_q \left(\gamma a^0 (da_1)^{(k_1)} \cdots (da_{2m})^{(k_{2m})} |D|^{-2|k|-2m} \right)$$
(1)

for m > 0 and

$$\phi_0(a^0) = \tau_{-1}(\gamma a^0).$$
 (2)

G-space G-manifold equivariant theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

Contents

•

Appendix 3:

In the above formula $k = (k_1, ..., k_{2m}) \in \mathbb{N}^{2m}$ are multi-indices and $c_{2m,k,q}$ are universal constants given by

$$c_{2m,k,q} = \frac{(-1)^{|k|}}{k!\tilde{k}!}\sigma_q(|k|+m),$$
(3)

where $k! = k_1! ... k_{2m}!$, $\tilde{k}! = (k_1 + 1)(k_1 + k_2 + 2) ... (k_1 + ... + k_{2m} + 2m)$, and for any $N \in \mathbb{N}$, $\sigma_q(N)$ is the *q*-th elementary polynomial of the set $\{1, 2, ..., N - 1\}$.

theory TEO Examples Index "Space" A K-homology $(\mathscr{A}, \mathscr{H}, D)$ Wave Front Oscillatory Resolution Conclusion *****

◀

Contents

G-space

G-manifold

equivariant